Study of Nanostructural, Electrical, and Optical Properties of Mn0.6Fe2.4O4–PEG/PVP/PVA Ferrogels for Optoelectronic Applications


Ferrogels based on polyvinylpyrrolidone/polyvinyl alcohol (PVP/PVA) matrices with Mn0.6Fe2.4O4–polyethylene glycol (Mn0.6Fe2.4O4–PEG) were synthesized using the freezing–thawing method. The phase structure and morphology of ferrogels with Mn0.6Fe2.4O4–PEG filler were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The Mn0.6Fe2.4O4–PEG/PVP/PVA ferrogel was characterized using small-angle X-ray scattering to determine the distribution of Mn0.6Fe2.4O4–PEG nanoparticles through two-lognormal data analysis; the semicrystallite distribution of the PVP/PVA was investigated using the Beaucage and Teubner–Strey models. The optical and electrical properties of the Mn0.6Fe2.4O4–PEG nanoparticles were characterized using a UV–Vis spectrophotometer. The XRD analysis showed that the Mn0.6Fe2.4O4–PEG exhibits an inverse-spinel cubic structure with an average particle size of 10.2 nm. This result was corroborated by TEM analysis, which revealed an average size of 10.9 nm through the Image-J software analysis. The two-lognormal method was used to analyze the distribution of Mn0.6Fe2.4O4–PEG nanoparticles in the ferrogel, revealing a secondary particle size of approximately 9.8 nm. These secondary particles are, on average, evenly arranged with respect to the primary particles with a diameter of 3.3 nm. UV–Vis data analysis showed that the refractive index and energy gap of the Mn0.6Fe2.4O4–PEG nanoparticles were approximately 2.79 and 2.24 eV, respectively. The optical conductivity and electrical conductivity calculated from the refractive-index and energy-gap data were 1.27 × 108 and 70 Ω−1 cm−1, respectively. These results indicate that the Mn0.6Fe2.4O4–PEG nanoparticles exhibit strong potential for use as a base material in optoelectronics applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    H. Oliveira, E. Pérez-Andrés, J. Thevenot, O. Sandre, E. Berra, S. Lecommandoux, Magnetic field triggered drug release from polymersomes for cancer therapeutics. J. Control. Release 169(3), 165–170 (2013)

    CAS  Article  Google Scholar 

  2. 2.

    L. Polo-corrales, J.E. Ramirez-vick, E.J. Hernandez-ramos, Thermosensitive hydrogels with nanofillers incorporated to use in food packaging applications. Int. J. Appl. Eng. Res. 13(10), 7305–7308 (2018)

    Google Scholar 

  3. 3.

    F.A. Blyakhman et al., Polyacrylamide ferrogels with embedded maghemite nanoparticles for biomedical engineering. Results Phys. 7, 3624–3633 (2017)

    Article  Google Scholar 

  4. 4.

    S. Klein et al., Enhanced in vitro biocompatibility and water dispersibility of magnetite and cobalt ferrite nanoparticles employed as ros formation enhancer in radiation cancer therapy. Small 14(21), 1–10 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    S.M. Taimoory et al., The synthesis and characterization of a magnetite nanoparticle with potent antibacterial activity and low mammalian toxicity. J. Mol. Liq. 265, 96–104 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Fei et al., Aqueous superparamagnetic magnetite dispersions with ultra-high initial magnetic susceptibilities. Langmuir (2017).

    Article  PubMed  Google Scholar 

  7. 7.

    Y. Du, J. Mao, Effect of magnetite nanoparticles on nuclear magnetic resonance imaging. J. Nanoelectron. Optoelectron. 12(9), 961–965 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    M. Abdellahi, E. Karamian, A. Najafinezhad, F. Ranjabar, A. Chami, A. Khandan, Diopside-magnetite; a novel nanocomposite for hyperthermia applications. J. Mech. Behav. Biomed. Mater. 77, 534–538 (2018).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    M. Gerosa, C.E. Bottani, C. Di Valentin, G. Onida, G. Pacchioni, Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments. J. Phys. Condens. Matter. (2018).

    Article  PubMed  Google Scholar 

  10. 10.

    S.P. Zustiak, J.B. Leach, Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromol 11(5), 1348–1357 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Sunaryono, M.F. Hidayat, C. Insjaf, A. Taufiq, N. Mufti, Munasir, Investigation of magnetic properties and mechanical responses on hydrogel-TMAH-magnetite, IOP conference series: materials science and engineering, vol. 367 (IOP Publishing, Bristol, 2018).

    Google Scholar 

  12. 12.

    L. Jiao, P. Qi, Y. Liu, B. Wang, L. Shan, Fe3O4 Nanoparticles embedded sodium alginate/PVP/calcium gel composite for removal of Cd2+. J. Nanomater. (2015).

    Article  Google Scholar 

  13. 13.

    Y. Shi, D.S. Xiong, Y. Peng, N. Wang, Effects of polymerization degree on recovery behavior of PVA/PVP hydrogels as potential articular cartilage prosthesis after fatigue test. Express Polym. Lett. 10, 125–138 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    G. Lu et al., Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 4(4), 310–316 (2012).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    J.S. Gonzalez, P. Nicolás, M.L. Ferreira, M. Avena, V.L. Lassalle, V.A. Alvarez, Fabrication of ferrogels using different magnetic nanoparticles and their performance on protein adsorption. Polym. Int. 63(2), 258–265 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    A. Radoń, A. Drygała, Ł. Hawełek, D. Łukowiec, Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers. Mater. Charact. 131, 148–156 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    A. Bahadur et al., Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: dielectric, magnetic, thermal and optical studies. Mater. Chem. Phys. 198, 229–235 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    S. Güner, M. Amir, M. Geleri, M. Sertkol, A. Baykal, Magneto-optical properties of Mn3+ substituted Fe3O4 nanoparticles. Ceram. Int. 41, 1–8 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    M. Cabuk, B. Gündüz, Controlling the optical properties of polyaniline doped by boric acid particles by changing their doping agent and initiator concentration. Appl. Surf. Sci. 424, 345–351 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    P. Jayakrishnan, M.T. Ramesan, Synthesis, characterization, electrical conductivity and material properties of magnetite/polyindole/poly(vinyl alcohol) blend nanocomposites. J. Inorg. Organomet. Polym. Mater. 27(1), 323–333 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    S. Bagheli, H.K. Fadafan, R.L. Orimi, M. Ghaemi, Synthesis and experimental investigation of the electrical conductivity of water based magnetite nanofluids. Powder Technol. 274, 426–430 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    B.Y. Yu et al., Assembly of magnetite nanoparticles into spherical mesoporous aggregates with a 3-D Wormhole-Like porous structure. J. Mater. Chem. 38, 8320–8328 (2010)

    Article  Google Scholar 

  23. 23.

    Sunaryono, Contributions of TMAH surfactant on hierarchical structures of PVA/Fe3O4–TMAH Ferrogels by using SAXS instrument.J. Inorg. Organomet. Polym Mater.

    Article  Google Scholar 

  24. 24.

    P.T. Bui, J.-H. Song, Z.-Y. Li, M.S. Akhtar, O.-B. Yang, Low temperature solution processed Mn3O4 nanoparticles: Enhanced performance of electrochemical supercapacitors. J. Alloys Compd. 694, 560–567 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    X. Yang, J. Kan, F. Zhang, M. Zhu, S. Li, Facile fabrication of Mn2+ doped magnetite microspheres as efficient electrode material for supercapacitors. J. Inorg. Organomet. Polym Mater. 27(2), 542–551 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    R. Otero-Lorenzo, E. Fantechi, C. Sangregorio, V. Salgueiriño, Solvothermally driven mn doping and clustering of iron oxide nanoparticles for heat delivery applications. Chemistry A 22(19), 6666–6675 (2016)

    CAS  Google Scholar 

  27. 27.

    L.B. de Mello, L.C. Varanda, F.A. Sigoli, I.O. Mazali, Co-precipitation synthesis of (Zn–Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia. J. Alloys Compd. (2019).

    Article  Google Scholar 

  28. 28.

    A. Taufiq et al., Nanoscale clustering and magnetic properties of MnxFe3−xO4 particles prepared from natural magnetite. J. Supercond. Novel Magn. 28(9), 2855–2863 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    J. Teixeira, Small-angle scattering by fractal systems. J. Appl. Crystallogr. 21(6), 781–785 (1988).

    Article  Google Scholar 

  30. 30.

    S.M. Yusuf et al., Structural and magnetic properties of amorphous iron oxide. Phys. B 405(4), 1202–1206 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    P.J. Vikesland, R.L. Rebodos, J.Y. Bottero, J. Rose, A. Masion, Aggregation and sedimentation of magnetite nanoparticle clusters. Environ. Sci: Nano 3(3), 567–577 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    X. Lasheras et al., Mn-Doping level dependence on the magnetic response of MnxFe3–xO4 ferrite nanoparticles. Dalton Trans. 48(30), 11480–11491 (2019)

    CAS  Article  Google Scholar 

  33. 33.

    F.L. Deepak et al., A systematic study of the structural and magnetic properties of Mn-, Co-, and Ni-doped colloidal magnetite nanoparticles. J. Phys. Chem. C 119(21), 11947–11957 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    J.M. Orozco-Henao et al., Effects of nanostructure and dipolar interactions on magnetohyperthermia in iron oxide nanoparticles. J. Phys. Chem. C 120(23), 12796–12809 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    W. Szczerba, R. Costo, S. Veintemillas-Verdaguer, M. DelPuerto Morales, A.F. Thünemann, SAXS analysis of single-and multi-core iron oxide magnetic nanoparticles. J. Appl. Crystallogr. 50, 481–488 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Sunaryono et al., Small-angle X-ray scattering study on PVA/Fe3O4 magnetic hydrogels. NANO. 11, 1650027 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    T. Puspitasari, K.M.L. Raja, D.S. Pangerteni, A. Patriati, E.G.R. Putra, Structural organization of poly(vinyl alcohol) hydrogels obtained by freezing/thawing and γ-irradiation processes: a Small-Angle Neutron Scattering (SANS) Study. Proced. Chem. 4, 186–193 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    O. Owoseni et al., Microstructural characteristics of surfactant assembly into a gel-like mesophase for application as an oil spill dispersant. J. Colloid Interface Sci. 524, 279–288 (2018)

    CAS  Article  Google Scholar 

  39. 39.

    M.M.N. Ansari, S. Khan, Structural, electrical and optical properties of sol-gel synthesized cobalt substituted MnFe2O4 nanoparticles. Phys. B 520, 21–27 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    A.S. Ahmed, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131(1), 1–6 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    M. Khairy, M.E. Gouda, Electrical and optical properties of nickel ferrite/polyaniline nanocomposite. J. Adv. Res. 6(4), 555–562 (2015).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys Status Solidi (b) 15(2), 627–637 (1966)

    CAS  Article  Google Scholar 

  43. 43.

    P. Iranmanesh, S. Saeednia, M. Mehran, S.R. Dafeh, Modified structural and magnetic properties of nanocrystalline MnFe2O4by pH in capping agent free co-precipitation method. J. Magn. Magn. Mater. 425, 31–36 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Muzammil et al., Effect of template on structural and band gap behaviors of magnetite nanoparticles. J. Phys.: Conf. Ser. 1093, 012020 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    A. Mary Jacintha, A. Manikandan, K. Chinnaraj, S. Arul Antony, P. Neeraja, Comparative studies of spinel MnFe2O4 nanostructures: structural, morphological, optical, magnetic and catalytic properties. J. Nanosci. Nanotechnol. 15(12), 9732–9740 (2015).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    S.S. Fareed et al., Properties of SILAR deposited magnetite (Fe3O4) thin films: effect of bath temperatures. J Mater Sci: Mater Electron. 28(13), 9450–9455 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    V.D. Mote, V.R. Huse, B.N. Dole, Synthesis and characterization of Cr doped ZnO nanocrystals. Sci. Res. (2012).

    Article  Google Scholar 

  48. 48.

    S. Irfan, Y. Shen, S. Rizwan, H.-C. Wang, S.B. Khan, C.-W. Nan, Band-Gap engineering and enhanced photocatalytic activity of sm and mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100(1), 31–40 (2017)

    CAS  Article  Google Scholar 

  49. 49.

    X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010)

    CAS  Article  Google Scholar 

  50. 50.

    S.K. Tripathy, Refractive indices of semiconductors from energy gaps. Opt. Mater. 46, 240–246 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    S.J. Iyengar, M. Joy, T. Maity, J. Chakraborty, R.K. Kotnala, S. Ghosh, Colloidal properties of water dispersible magnetite nanoparticles by photon correlation spectroscopy. RSC Adv. 6(17), 14393–14402 (2016).

    CAS  Article  Google Scholar 

  52. 52.

    D. Chettri, K.J. Singh, M. Mathew, N.D. Gupta, A novel numerical approach for the calculation of refractive index of Wurtzite InxGa1–xN. Int. J. Mod. Phys. B 32(28), 1850315 (2018)

    CAS  Article  Google Scholar 

  53. 53.

    J. Chen, H.S. Hsu, Y.H. Huang, D.J. Huang, Spin-dependent optical charge transfer in magnetite from transmitting optical magnetic circular dichroism. Phys. Rev. B 98(8), 1–11 (2018).

    CAS  Article  Google Scholar 

  54. 54.

    S. Yusub, P. Srinivasa Rao, D. Krishna Rao, Ionic conductivity, dielectric and optical properties of lithium lead borophosphate glasses combined with manganese ions. J. Alloys Compd. 663, 708–717 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    S.L.S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M.N. Chary, M.L. Rao, Optical properties of alkaline earth borate glasses. Int. J. Eng. Sci. Technol. 4(4), 25–35 (2012).

    Article  Google Scholar 

  56. 56.

    S. Kawano, T. Yoshino, I. Katayama, Electrical conductivity of magnetite-bearing serpentinite during shear deformation. Geophys. Res. Lett. (2012).

    Article  Google Scholar 

Download references


This work would not have been possible without financial support from the PDUPT DRPM DIKTI research Grant on behalf of SN. The author would like to thank the PDUPT DRPM DIKTI for financial support.

Author information



Corresponding author

Correspondence to Sunaryono.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sunaryono, Hidayat, M.F., Kholifah, M.N. et al. Study of Nanostructural, Electrical, and Optical Properties of Mn0.6Fe2.4O4–PEG/PVP/PVA Ferrogels for Optoelectronic Applications. J Inorg Organomet Polym (2020).

Download citation


  • Electrical properties
  • Magnetic hydrogel
  • Mn0.6Fe2.4O4–PEG
  • Optical properties