Skip to main content
Log in

Development of Triphasic Hydroxyapatite/(α and β)-Tricalcium Phosphate Based Composites by Sintering Powder of Calcium-Apatite in the Presence of Montmorillonite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In recent years, the development of calcium phosphate/clay composites for bone tissue engineering attracted a lot of interest. In this study, novel bio-composites composed of hydroxyapatite (HAP), α and β-tricalcium phosphate (α, β-TCP) and sodium-montmorillonite (MNa) were developed. The composites were prepared by sintering at 900 °C of calcium-apatite powders in the presence of various amounts of MNa. The calcium-apatite precursors were prepared by the wet precipitation method with two desired Ca/P molar ratios (1.660 and 1.623). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to characterize the prepared composites. The results showed that during the sintering process, a surface interaction apatite/MNa led to the incorporation of clay ions into the apatite structure resulting in its decomposition and formation of composite ceramics comprising HAP, β and α-TCP. The decomposition of apatite increased with increasing MNa content and with decreasing Ca/P ratio. The decomposition of stoichiometric HAP led to triphasic ceramics with substituted-HAP as the major phase while the decomposition of calcium-deficient HAP led to triphasic ceramics with substituted-α-TCP as the major phase. Combination of MNa–clay phase and substituted-α-TCP can improve both mechanical and biological properties of the prepared composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Daculsi, O. Laboux, O. Malard, P. Weiss, J. Mater. Sci. Mater. Med. 14, 195–200 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. R.Z. LeGeros, S. Lin, R. Rohanizadeh, D. Mijares, J.P. LeGeros, Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci. Mater. Med. 14, 201–209 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. R.G. Carrodeguas, S. De Aza, α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater. 7, 3536–3546 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. M. Ebrahimi, M.G. Botelho, S.V. Dorozhkin, Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater. Sci. Eng. C. 71, 1293–1312 (2017)

    Article  CAS  Google Scholar 

  5. S. Sureshbabu, M. Komath, H.K. Varma, In situ formation of hydroxyapatite-αlpha tricalcium phosphate biphasic ceramics with higher strength and bioactivity. J. Am. Ceram. Soc. 95, 915–924 (2012)

    CAS  Google Scholar 

  6. G.R. Owen, M. Dard, H. Larjava, Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J. Biomed. Mater. Res. B 106(6), 2493–2512 (2018)

    Article  CAS  Google Scholar 

  7. Z. Radovanovic, D. Veljovic, L. Radovanovic, I. Zalite, E. Palcevskis, R. Petrovic, D. Janackovic, Ag+, Cu2+ and Zn2+ doped hydroxyapatite/tricalcium phosphate bioceramics: influence of doping and sintering technique on mechanical properties. Process Appl. Ceram. 12, 268–276 (2018)

    Article  CAS  Google Scholar 

  8. I. Bajpai, D.Y. Kim, J. Kyong-Jin, I.-H. Song, S. Kim, Response of human bone marrow-derived MSCs on triphasic Ca-P substrate with various HA/TCP ratio. J. Biomed. Mater. Res. B 105, 72–80 (2017)

    Article  CAS  Google Scholar 

  9. M.-K. Ahn, Y.-W. Moon, Y.-H. Koh, H.-E. Kim, Production of highly porous triphasic calcium phosphate scaffolds with excellent in vitro bioactivity using vacuum-assisted foaming of ceramic suspension (VFC) technique. Ceram. Int. 39, 5879–5885 (2013)

    Article  CAS  Google Scholar 

  10. S.V. Dorozhkin, Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 8, 963–977 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R. 28, 1–63 (2000)

    Article  Google Scholar 

  12. C. Zilg, F. Dietsche, B. Hoffmann, C. Dietrich, R. Mühlhaupt, Nanofillers based upon organophilic layered silicates. Macromol. Symp. 169, 65–77 (2001)

    Article  CAS  Google Scholar 

  13. A. Borrego-Sánchez, E. Carazo, C. Aguzzi, C. Viseras, C.I. Sainz-Díaz, Biopharmaceutical improvement of praziquantel by interaction with montmorillonite and sepiolite. Appl. Clay. Sci. 160, 173–179 (2018)

    Article  CAS  Google Scholar 

  14. J.-.H. Park, H.-.J. Shin, M.H. Kim, J.-.S. Kim, N. Kang, J.-.Y. Lee, K.-.T. Kim, J.I. Lee, D.- D. Kim, Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. Pharm. Invest. 46, 363 (2016)

  15. A. Olad, F.F. Azhar, The synergetic effect of bioactive ceramic and nanoclay on theproperties of chitosan-gelatin/nanohydroxyapatite-montmorillonite scaffold for bone tissue engineering. Ceram. Int. 40, 10061–10072 (2014)

    Article  CAS  Google Scholar 

  16. A.H. Ambre, D.R. Katti, K.S. Katti, Biomineralized hydroxyapatite nanoclay-compositescaffolds with polycaprolactone for stem cell-based bone tissue engineering. J. Biomed. Mater. Res. A 103, 2077–2101 (2014)

    Article  PubMed  CAS  Google Scholar 

  17. K.S. Katti, D.R. Katti, R. Dash, Synthesis and characterization of a novelchitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed. Mater. 3(3), 034122 (2008)

    Article  PubMed  CAS  Google Scholar 

  18. S. Hesaraki, A. Zamanian, M. Hafezi, Montmorillonite-added calcium phosphate bioceramic foams. Key Eng. Mater. 361, 11–114 (2008)

    Google Scholar 

  19. H. Khallok, S. Ojala, M. Ezzahmouly, A. Elouahli, E. Gourri, M. Jamil, Z. Hatim, Porous foams based hydroxyapatite prepared by direct foaming method using egg white as a pore promoter. J. the Aust. Ceram. Soc. 55, 611–619 (2018)

    Article  CAS  Google Scholar 

  20. M. Jamil, A. Elouahli, H. Khallok, B. El ouatli, Z. Hatim, Characterization of β-tricalcium phosphate-clay mineral composite obtained by sintering powder of apatitic calcium phosphate and montmorillonite. Surf. Interfaces. 17, 100380 (2019)

    Article  CAS  Google Scholar 

  21. R. Nawang, M.Z. Hussein, K.A. Matori, C.A.C. Abdullah, M. Hashim, Physicochemical properties of hydroxyapatite/montmorillonite nanocomposite prepared by powder sintering. Results Phys. 15, 102540 (2019)

    Article  Google Scholar 

  22. A. El Ouahli, H. Khallok, Z. Hatim, Neutralization method for tricalcium phosphate production: optimization using response surface methodology. Surf. Interfaces. 15, 100–109 (2019)

    Article  CAS  Google Scholar 

  23. F. Abida, valorization of orthophosphoric acid produced in Morocco by the preparation of hydroxyapatite powder and ceramic parts for medical use (Unpublished doctoral dissertation) (Chouaib Doukkali University, Morocco, 2011)

    Google Scholar 

  24. C. Ergun, Effect of Ti ion substitution on the structure of hydroxylapatite. J. Eur. Ceram. Soc. 28, 2137–2149 (2008)

    Article  CAS  Google Scholar 

  25. M. Jamil, B. Elouatli, H. Khallok, A. Elouahli, E. Gourri, M. Ezzahmouly, F. Abida, Z. Hatim, Silicon substituted hydroxyapatite: preparation with solid-state reaction, characterization and dissolution properties. J. Mater. Environ. Sci. 9, 2322–2327 (2018)

    CAS  Google Scholar 

  26. C.W. Song, T.W. Kim, D.H. Kim, H.H. Jin, K.H. Hwang, J.K. Lee, H.C. Park, S.Y. Yoon, In situ synthesis of silicon-substituted biphasic calcium phosphate and their performance in vitro. J. Phy. Chem. of Solids. 73, 39–45 (2012)

    Article  CAS  Google Scholar 

  27. A. Bianco, I. Cacciotti, M. Lombardi, L. Montanaro, Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater. Res. Bull. 44, 345–354 (2009)

    Article  CAS  Google Scholar 

  28. M. Motisuke, R.G. Carrodeguas, C.A.D.C. Zavaglia, Si-Tricalcium Phosphate Cement: Preparation, Characterization and Bioactivity in SBF. J. Mater. Res. 14, 493–498 (2011)

    Article  CAS  Google Scholar 

  29. D. Dunfield, M. Sayer, H.F. Shurvell, Total Attenuated Reflection Infrared Analysis of Silicon-Stabilized Tri-Calcium Phosphate. J. Phys. Chem. B. 109, 19579–19583 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. M. Hidouri, S.V. Dorozhkin, N. Albeladi, Thermal Behavior, Sintering and Mechanical Characterization of Multiple Ion-Substituted Hydroxyapatite Bioceramics. J. Inorg. Organomet. Polym. Mater. 29, 87–100 (2019)

    Article  CAS  Google Scholar 

  31. S.K. Padmanabhan, E.U. Haq, A. Licciulli, Rapid synthesis and characterization of silicon substituted nano hydroxyapatite using microwave irradiation. Curr. App. Phy. 14, 87–92 (2014)

    Article  Google Scholar 

  32. M. Palard, J. Combes, E. Champion, S. Foucaud, A. Rattner, D. Bernache-Assollant, Effect of silicon content on the sintering and biological behaviour of Ca10(PO4), 6–x(SiO4)x(OH)2–x ceramics. Acta Biomater. 5, 1223–1232 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. F. Heshmatpour, S.H. Lashteneshaee, M. Samadipour, Study of In Vitro Bioactivity of Nano Hydroxyapatite Composites Doped by Various Cations. J. Inorg. Organomet. Polym. Mater. 28(5), 2063–2068 (2018)

    Article  CAS  Google Scholar 

  34. S. Kannan, J.M.G. Ventura, A.F. Lemos, A. Barba, J.M.F. Ferreira, Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics. Ceram. Int. 34, 7–13 (2008)

    Article  CAS  Google Scholar 

  35. O. Kaygili, S. Keser, N. Bulut, T. Ates, Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Phys B 537, 63–67 (2018)

    Article  CAS  Google Scholar 

  36. S. Gomes, G. Renaudin, A. Mesbah, E. Jallot, C. Bonhomme, F. Babonneau, J.-M. Nedelec, Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study. Acta Biomater. 6, 3264–3274 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. L.T. Bang, S. Ramesh, J. Purbolaksono, Y.C. Ching, B.D. Long, H. Chandran, S. Ramesh, R. Othman, Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method. Mater. Des. 87, 788–796 (2015)

    Article  CAS  Google Scholar 

  38. F. Abida, M. Elassfouri, M. Ilou, B. Elouatli, M. Jamil, N. Moncif, Z. Hatim, Tricalcium phosphate powder: preparation, characterization and compaction abilities. Mediterr. J. Chem. 6, 71–76 (2017)

    Article  CAS  Google Scholar 

  39. J. Welch, W. Gutt, High-temperature studies of the system calcium oxide-phosphorus pentoxide, J. Chem. Soc. 4442–4444 (1961).

  40. I.M. Martínez, P.A. Velásquez, P.N. De Aza, Synthesis and stability of α-tricalcium phosphate doped with dicalcium silicate in the system Ca3(PO4)2–Ca2SiO4. Mater. Charact. 61, 761–767 (2010)

    Article  CAS  Google Scholar 

  41. J.W. Reid, L. Tuck, M. Sayer, K. Fargo, J.A. Hendry, Synthesis and characterization of single-phase silicon-substituted α-tricalcium phosphate. Biomaterials 27, 2916–2925 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. J.W. Reid, A. Pietak, M. Sayer, D. Dunfield, T.J.N. Smith, Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system. Biomaterials 26, 2887–2897 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. S. Langstaff, M. Sayer, T.J.N. Smith, S.M. Pugh, S.A.M. Hesp, W.T. Thompson, Resorbable bioceramics based on stabilized calcium phosphates: Part I: rational design, sample preparation and material characterization. Biomaterials 20, 1727–1741 (1999)

    Article  CAS  PubMed  Google Scholar 

  44. I. Massie, J.M.S. Skakle, I.R. Gibson, Synthesis and phase stability of silicate-substituted α-tricalcium phosphate. Key Eng. Mater. 361, 67–70 (2008)

    Google Scholar 

  45. A.M. Pietak, J.W. Reid, M.J. Stott, M. Sayer, Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28, 4023–4032 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. Z.Q. Jia, Z.X. Guo, F. Chen, J.J. Li, L. Zhao, L. Zhang, Microstructure, phase compositions and in vitro evaluation of freeze casting hydroxyapatite-silica scaffolds. Ceram. Int. 44, 3636–3643 (2017)

    Article  CAS  Google Scholar 

  47. G. Tomoaia, A. Mocanu, I. Vida-Simiti, N. Jumate, L.D. Bobos, O. Soritau, M. Tomoaia-Cotisel, Silicon effect on the composition and structure of nanocalcium phosphates: in vitro biocompatibility to human osteoblasts. Mater. Sci. Eng. C 37, 37–47 (2014)

    Article  CAS  Google Scholar 

  48. Z.Y. Qiu, G. Li, Y.Q. Zhang, J. Liu, W. Hu, J. Ma, S.M. Zhang, Fine structure analysis and sintering properties of Si-doped hydroxyapatite. Biomed. Mater. 7(4), 045009 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. L.T. Bang, K. Ishikawa, R. Othman, Effect of silicon and heat-treatment temperature on the morphology and mechanical properties of silicon-substituted hydroxyapatite. Ceram. Int. 37, 3637–3642 (2011)

    Article  CAS  Google Scholar 

  50. O. Kaygili, C. Tatar, F. Yakuphanoglu, S. Keser, Nano-crystalline aluminum-containing hydroxyapatite based bioceramics: synthesis and characterization. J. Sol-Gel Sci. Technol. 65, 105–111 (2013)

    Article  CAS  Google Scholar 

  51. Z. Evis, Al3+ doped nano-hydroxyapatites and their sintering characteristics. J. Ceram. Soc. of Japan. 114, 1001–1004 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jamil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, M., Elouahli, A., Abida, F. et al. Development of Triphasic Hydroxyapatite/(α and β)-Tricalcium Phosphate Based Composites by Sintering Powder of Calcium-Apatite in the Presence of Montmorillonite. J Inorg Organomet Polym 30, 2489–2498 (2020). https://doi.org/10.1007/s10904-020-01479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01479-9

Keywords

Navigation