Development of Triphasic Hydroxyapatite/(α and β)-Tricalcium Phosphate Based Composites by Sintering Powder of Calcium-Apatite in the Presence of Montmorillonite


In recent years, the development of calcium phosphate/clay composites for bone tissue engineering attracted a lot of interest. In this study, novel bio-composites composed of hydroxyapatite (HAP), α and β-tricalcium phosphate (α, β-TCP) and sodium-montmorillonite (MNa) were developed. The composites were prepared by sintering at 900 °C of calcium-apatite powders in the presence of various amounts of MNa. The calcium-apatite precursors were prepared by the wet precipitation method with two desired Ca/P molar ratios (1.660 and 1.623). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to characterize the prepared composites. The results showed that during the sintering process, a surface interaction apatite/MNa led to the incorporation of clay ions into the apatite structure resulting in its decomposition and formation of composite ceramics comprising HAP, β and α-TCP. The decomposition of apatite increased with increasing MNa content and with decreasing Ca/P ratio. The decomposition of stoichiometric HAP led to triphasic ceramics with substituted-HAP as the major phase while the decomposition of calcium-deficient HAP led to triphasic ceramics with substituted-α-TCP as the major phase. Combination of MNa–clay phase and substituted-α-TCP can improve both mechanical and biological properties of the prepared composites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    G. Daculsi, O. Laboux, O. Malard, P. Weiss, J. Mater. Sci. Mater. Med. 14, 195–200 (2003)

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    R.Z. LeGeros, S. Lin, R. Rohanizadeh, D. Mijares, J.P. LeGeros, Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci. Mater. Med. 14, 201–209 (2003)

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    R.G. Carrodeguas, S. De Aza, α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater. 7, 3536–3546 (2011)

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    M. Ebrahimi, M.G. Botelho, S.V. Dorozhkin, Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater. Sci. Eng. C. 71, 1293–1312 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    S. Sureshbabu, M. Komath, H.K. Varma, In situ formation of hydroxyapatite-αlpha tricalcium phosphate biphasic ceramics with higher strength and bioactivity. J. Am. Ceram. Soc. 95, 915–924 (2012)

    CAS  Google Scholar 

  6. 6.

    G.R. Owen, M. Dard, H. Larjava, Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J. Biomed. Mater. Res. B 106(6), 2493–2512 (2018)

    Article  CAS  Google Scholar 

  7. 7.

    Z. Radovanovic, D. Veljovic, L. Radovanovic, I. Zalite, E. Palcevskis, R. Petrovic, D. Janackovic, Ag+, Cu2+ and Zn2+ doped hydroxyapatite/tricalcium phosphate bioceramics: influence of doping and sintering technique on mechanical properties. Process Appl. Ceram. 12, 268–276 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    I. Bajpai, D.Y. Kim, J. Kyong-Jin, I.-H. Song, S. Kim, Response of human bone marrow-derived MSCs on triphasic Ca-P substrate with various HA/TCP ratio. J. Biomed. Mater. Res. B 105, 72–80 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    M.-K. Ahn, Y.-W. Moon, Y.-H. Koh, H.-E. Kim, Production of highly porous triphasic calcium phosphate scaffolds with excellent in vitro bioactivity using vacuum-assisted foaming of ceramic suspension (VFC) technique. Ceram. Int. 39, 5879–5885 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    S.V. Dorozhkin, Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 8, 963–977 (2012)

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R. 28, 1–63 (2000)

    Article  Google Scholar 

  12. 12.

    C. Zilg, F. Dietsche, B. Hoffmann, C. Dietrich, R. Mühlhaupt, Nanofillers based upon organophilic layered silicates. Macromol. Symp. 169, 65–77 (2001)

    CAS  Article  Google Scholar 

  13. 13.

    A. Borrego-Sánchez, E. Carazo, C. Aguzzi, C. Viseras, C.I. Sainz-Díaz, Biopharmaceutical improvement of praziquantel by interaction with montmorillonite and sepiolite. Appl. Clay. Sci. 160, 173–179 (2018)

    Article  CAS  Google Scholar 

  14. 14.

    J.-.H. Park, H.-.J. Shin, M.H. Kim, J.-.S. Kim, N. Kang, J.-.Y. Lee, K.-.T. Kim, J.I. Lee, D.- D. Kim, Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. Pharm. Invest. 46, 363 (2016)

  15. 15.

    A. Olad, F.F. Azhar, The synergetic effect of bioactive ceramic and nanoclay on theproperties of chitosan-gelatin/nanohydroxyapatite-montmorillonite scaffold for bone tissue engineering. Ceram. Int. 40, 10061–10072 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    A.H. Ambre, D.R. Katti, K.S. Katti, Biomineralized hydroxyapatite nanoclay-compositescaffolds with polycaprolactone for stem cell-based bone tissue engineering. J. Biomed. Mater. Res. A 103, 2077–2101 (2014)

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    K.S. Katti, D.R. Katti, R. Dash, Synthesis and characterization of a novelchitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed. Mater. 3(3), 034122 (2008)

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    S. Hesaraki, A. Zamanian, M. Hafezi, Montmorillonite-added calcium phosphate bioceramic foams. Key Eng. Mater. 361, 11–114 (2008)

    Google Scholar 

  19. 19.

    H. Khallok, S. Ojala, M. Ezzahmouly, A. Elouahli, E. Gourri, M. Jamil, Z. Hatim, Porous foams based hydroxyapatite prepared by direct foaming method using egg white as a pore promoter. J. the Aust. Ceram. Soc. 55, 611–619 (2018)

    Article  CAS  Google Scholar 

  20. 20.

    M. Jamil, A. Elouahli, H. Khallok, B. El ouatli, Z. Hatim, Characterization of β-tricalcium phosphate-clay mineral composite obtained by sintering powder of apatitic calcium phosphate and montmorillonite. Surf. Interfaces. 17, 100380 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    R. Nawang, M.Z. Hussein, K.A. Matori, C.A.C. Abdullah, M. Hashim, Physicochemical properties of hydroxyapatite/montmorillonite nanocomposite prepared by powder sintering. Results Phys. 15, 102540 (2019)

    Article  Google Scholar 

  22. 22.

    A. El Ouahli, H. Khallok, Z. Hatim, Neutralization method for tricalcium phosphate production: optimization using response surface methodology. Surf. Interfaces. 15, 100–109 (2019)

    Article  CAS  Google Scholar 

  23. 23.

    F. Abida, valorization of orthophosphoric acid produced in Morocco by the preparation of hydroxyapatite powder and ceramic parts for medical use (Unpublished doctoral dissertation) (Chouaib Doukkali University, Morocco, 2011)

    Google Scholar 

  24. 24.

    C. Ergun, Effect of Ti ion substitution on the structure of hydroxylapatite. J. Eur. Ceram. Soc. 28, 2137–2149 (2008)

    CAS  Article  Google Scholar 

  25. 25.

    M. Jamil, B. Elouatli, H. Khallok, A. Elouahli, E. Gourri, M. Ezzahmouly, F. Abida, Z. Hatim, Silicon substituted hydroxyapatite: preparation with solid-state reaction, characterization and dissolution properties. J. Mater. Environ. Sci. 9, 2322–2327 (2018)

    CAS  Google Scholar 

  26. 26.

    C.W. Song, T.W. Kim, D.H. Kim, H.H. Jin, K.H. Hwang, J.K. Lee, H.C. Park, S.Y. Yoon, In situ synthesis of silicon-substituted biphasic calcium phosphate and their performance in vitro. J. Phy. Chem. of Solids. 73, 39–45 (2012)

    CAS  Article  Google Scholar 

  27. 27.

    A. Bianco, I. Cacciotti, M. Lombardi, L. Montanaro, Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater. Res. Bull. 44, 345–354 (2009)

    CAS  Article  Google Scholar 

  28. 28.

    M. Motisuke, R.G. Carrodeguas, C.A.D.C. Zavaglia, Si-Tricalcium Phosphate Cement: Preparation, Characterization and Bioactivity in SBF. J. Mater. Res. 14, 493–498 (2011)

    CAS  Article  Google Scholar 

  29. 29.

    D. Dunfield, M. Sayer, H.F. Shurvell, Total Attenuated Reflection Infrared Analysis of Silicon-Stabilized Tri-Calcium Phosphate. J. Phys. Chem. B. 109, 19579–19583 (2005)

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    M. Hidouri, S.V. Dorozhkin, N. Albeladi, Thermal Behavior, Sintering and Mechanical Characterization of Multiple Ion-Substituted Hydroxyapatite Bioceramics. J. Inorg. Organomet. Polym. Mater. 29, 87–100 (2019)

    CAS  Article  Google Scholar 

  31. 31.

    S.K. Padmanabhan, E.U. Haq, A. Licciulli, Rapid synthesis and characterization of silicon substituted nano hydroxyapatite using microwave irradiation. Curr. App. Phy. 14, 87–92 (2014)

    Article  Google Scholar 

  32. 32.

    M. Palard, J. Combes, E. Champion, S. Foucaud, A. Rattner, D. Bernache-Assollant, Effect of silicon content on the sintering and biological behaviour of Ca10(PO4), 6–x(SiO4)x(OH)2–x ceramics. Acta Biomater. 5, 1223–1232 (2009)

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    F. Heshmatpour, S.H. Lashteneshaee, M. Samadipour, Study of In Vitro Bioactivity of Nano Hydroxyapatite Composites Doped by Various Cations. J. Inorg. Organomet. Polym. Mater. 28(5), 2063–2068 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    S. Kannan, J.M.G. Ventura, A.F. Lemos, A. Barba, J.M.F. Ferreira, Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics. Ceram. Int. 34, 7–13 (2008)

    CAS  Article  Google Scholar 

  35. 35.

    O. Kaygili, S. Keser, N. Bulut, T. Ates, Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Phys B 537, 63–67 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    S. Gomes, G. Renaudin, A. Mesbah, E. Jallot, C. Bonhomme, F. Babonneau, J.-M. Nedelec, Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study. Acta Biomater. 6, 3264–3274 (2010)

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    L.T. Bang, S. Ramesh, J. Purbolaksono, Y.C. Ching, B.D. Long, H. Chandran, S. Ramesh, R. Othman, Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method. Mater. Des. 87, 788–796 (2015)

    CAS  Article  Google Scholar 

  38. 38.

    F. Abida, M. Elassfouri, M. Ilou, B. Elouatli, M. Jamil, N. Moncif, Z. Hatim, Tricalcium phosphate powder: preparation, characterization and compaction abilities. Mediterr. J. Chem. 6, 71–76 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    J. Welch, W. Gutt, High-temperature studies of the system calcium oxide-phosphorus pentoxide, J. Chem. Soc. 4442–4444 (1961).

  40. 40.

    I.M. Martínez, P.A. Velásquez, P.N. De Aza, Synthesis and stability of α-tricalcium phosphate doped with dicalcium silicate in the system Ca3(PO4)2–Ca2SiO4. Mater. Charact. 61, 761–767 (2010)

    Article  CAS  Google Scholar 

  41. 41.

    J.W. Reid, L. Tuck, M. Sayer, K. Fargo, J.A. Hendry, Synthesis and characterization of single-phase silicon-substituted α-tricalcium phosphate. Biomaterials 27, 2916–2925 (2006)

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    J.W. Reid, A. Pietak, M. Sayer, D. Dunfield, T.J.N. Smith, Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system. Biomaterials 26, 2887–2897 (2005)

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    S. Langstaff, M. Sayer, T.J.N. Smith, S.M. Pugh, S.A.M. Hesp, W.T. Thompson, Resorbable bioceramics based on stabilized calcium phosphates: Part I: rational design, sample preparation and material characterization. Biomaterials 20, 1727–1741 (1999)

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    I. Massie, J.M.S. Skakle, I.R. Gibson, Synthesis and phase stability of silicate-substituted α-tricalcium phosphate. Key Eng. Mater. 361, 67–70 (2008)

    Google Scholar 

  45. 45.

    A.M. Pietak, J.W. Reid, M.J. Stott, M. Sayer, Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28, 4023–4032 (2007)

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Z.Q. Jia, Z.X. Guo, F. Chen, J.J. Li, L. Zhao, L. Zhang, Microstructure, phase compositions and in vitro evaluation of freeze casting hydroxyapatite-silica scaffolds. Ceram. Int. 44, 3636–3643 (2017)

    Article  CAS  Google Scholar 

  47. 47.

    G. Tomoaia, A. Mocanu, I. Vida-Simiti, N. Jumate, L.D. Bobos, O. Soritau, M. Tomoaia-Cotisel, Silicon effect on the composition and structure of nanocalcium phosphates: in vitro biocompatibility to human osteoblasts. Mater. Sci. Eng. C 37, 37–47 (2014)

    CAS  Article  Google Scholar 

  48. 48.

    Z.Y. Qiu, G. Li, Y.Q. Zhang, J. Liu, W. Hu, J. Ma, S.M. Zhang, Fine structure analysis and sintering properties of Si-doped hydroxyapatite. Biomed. Mater. 7(4), 045009 (2012)

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    L.T. Bang, K. Ishikawa, R. Othman, Effect of silicon and heat-treatment temperature on the morphology and mechanical properties of silicon-substituted hydroxyapatite. Ceram. Int. 37, 3637–3642 (2011)

    CAS  Article  Google Scholar 

  50. 50.

    O. Kaygili, C. Tatar, F. Yakuphanoglu, S. Keser, Nano-crystalline aluminum-containing hydroxyapatite based bioceramics: synthesis and characterization. J. Sol-Gel Sci. Technol. 65, 105–111 (2013)

    CAS  Article  Google Scholar 

  51. 51.

    Z. Evis, Al3+ doped nano-hydroxyapatites and their sintering characteristics. J. Ceram. Soc. of Japan. 114, 1001–1004 (2006)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Jamil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamil, M., Elouahli, A., Abida, F. et al. Development of Triphasic Hydroxyapatite/(α and β)-Tricalcium Phosphate Based Composites by Sintering Powder of Calcium-Apatite in the Presence of Montmorillonite. J Inorg Organomet Polym 30, 2489–2498 (2020).

Download citation


  • Hydroxyapatite
  • Tricalcium phosphate
  • Montmorillonite
  • Triphasic ceramics
  • Biocomposites