Optical, Functional Impact and Antimicrobial of Chitosan/Phosphosilicate/Al2O3 Nanosheets

Abstract

A nanosheets containing chitosan (CS) and bioactive P2O5:SiO2/Al2O3 were prepared by the sol–gel method. The nanosheets were characterized by XRD, FE-SEM, FT-IR and optical studies. FE-SEM displayed a nano-clustering and dense structure with promising morphology. The optical results reveal that the incorporation of Al2O3 nanoparticles within the phosphosilicate/chitosan system was successfully cross-linked and create a change in the internal electronic structure. The optical band gap increased from 3.6 to 3.8 eV with increasing Al2O3 content. The antimicrobial effectiveness for chitosan/phosphosilicate/(0.6, 0.9 mol.%)Al2O3 nanosheets exhibited remarkable enhancement in the antimicrobial activities that candidates it for spectroscopic and bio-applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    D.D.L. Chung, Composite Materials: Functional Materials for Modern Technologies (Springer, London, 2002).

    Google Scholar 

  2. 2.

    A.A. Higazy, H. Afifi, A.H. Khafagy, M.A. El-Shahawy, A.M. Mansour, Ultrasonics 44, e1439 (2006)

    PubMed  Google Scholar 

  3. 3.

    P. M. Visakh, G. Markovic, and D. Pasquini, Recent Developments in Polymer Macro, Micro and Nano Blends: Preparation and Characterisation (Woodhead Publishing, New Delhi, 2016).

  4. 4.

    A. Thabet, Y.A. Mobarak, M. Bakry, A. Thabet, Y.A. Mobarak, M. Bakry, J. Eng. Sci. 39, 377 (2011)

    Google Scholar 

  5. 5.

    S.C.M. Fernandes, C.S.R. Freire, A.J.D. Silvestre, C. Pascoal Neto, A. Gandini, L.A. Berglund, L. Salmén, Carbohydr. Polym. 81, 394 (2010)

    CAS  Google Scholar 

  6. 6.

    M. Tanahashi, Materials (Basel) 3, p. 1593, (2010).

    CAS  Google Scholar 

  7. 7.

    R. Asmatulu, W.S. Khan, R.J. Reddy, M. Ceylan, Polym. Compos. 36, 1565 (2015)

    CAS  Google Scholar 

  8. 8.

    R. J. Reddy, Preparation, Characterization and Properties of Injection Molded Graphene Nanocomposites, Wichita State University, 2010.

  9. 9.

    W. S. Khan, N. N. Hamadneh, and W. A. Khan, in Sci. Appl. Tailored Nanostructures, ed. by P. Di Sia (One Central Press (OCP), Cheshire, 2016), p. 50.

  10. 10.

    G. Crini, P.M. Badot, Prog. Polym. Sci. 33, 399 (2008)

    CAS  Google Scholar 

  11. 11.

    M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Prog. Polym. Sci. 36, 981 (2011)

    CAS  Google Scholar 

  12. 12.

    T.S. Trung, W.W. Thein-Han, N.T. Qui, C.H. Ng, W.F. Stevens, Bioresour. Technol. 97, 659 (2006)

    CAS  PubMed  Google Scholar 

  13. 13.

    A.F. Martins, S.P. Facchi, H.D.M. Follmann, A.G.B. Pereira, A.F. Rubira, E.C. Muniz, Int. J. Mol. Sci. 15, 20800 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    P. Dutta, J. Dutta, V. Tripathi, J. Sci. Ind. Res. 63, 20 (2008)

    Google Scholar 

  15. 15.

    K. Kurita, K. Tomita, T. Tada, S.I. Nishimura, S. Ishii, Polym. Bull. 30, 429 (1993)

    CAS  Google Scholar 

  16. 16.

    T.J. Gutiérrez, Chitosan (Wiley, Hoboken, 2017), pp. 183–232.

    Google Scholar 

  17. 17.

    A.M. Youssef, A.M. El-Nahrawy, A.B. Abou Hammad, Int. J. Biol. Macromol. 97, 561 (2017)

    CAS  PubMed  Google Scholar 

  18. 18.

    A.M. Elnahrawy, Y.S. Kim, A.I. Ali, J. Alloys Compd. 676, 432 (2016)

    CAS  Google Scholar 

  19. 19.

    M.W. Alam, F.A. Dar, F. Mohmed, A. Aljaafari, O. Saber, Mater. Express 9, 653 (2019)

    CAS  Google Scholar 

  20. 20.

    N. Farhadian, R. Akbarzadeh, M. Pirsaheb, T.C. Jen, Y. Fakhri, A. Asadi, Int. J. Biol. Macromol. 132, 360 (2019)

    CAS  PubMed  Google Scholar 

  21. 21.

    C. Tang, N. Chen, Q. Zhang, K. Wang, Q. Fu, X. Zhang, Polym. Degrad. Stab. 94, p. 124, (2009).

    CAS  Google Scholar 

  22. 22.

    J.W. Rhim, S.I. Hong, H.M. Park, P.K.W. Ng, J. Agric. Food Chem. 54, 5814 (2006)

    CAS  PubMed  Google Scholar 

  23. 23.

    G. Di Carlo, A. Curulli, R.G. Toro, C. Bianchini, T. De Caro, G. Padeletti, D. Zane, G.M. Ingo, Langmuir 28, 5471 (2012)

    PubMed  Google Scholar 

  24. 24.

    X. Liu, Q. Hu, Z. Fang, X. Zhang, B. Zhang, Langmuir 25, 3 (2009)

    CAS  PubMed  Google Scholar 

  25. 25.

    H.M.C.d. Azeredo, Food Res. Int. 42, 1240 (2009)

    Google Scholar 

  26. 26.

    F. Mohanty, S.K. Swain, in Nanotechnol. Appl. Food Flavor, Stability, Nutr. Saf. (Pergamon, 2017), pp. 363–379

  27. 27.

    T. Coradin, J. Allouche, M. Boissiere, J. Livage, Curr. Nanosci. 2, 219 (2006)

    CAS  Google Scholar 

  28. 28.

    B.P. Bastakoti, Y. Li, M. Imura, N. Miyamoto, T. Nakato, T. Sasaki, Y. Yamauchi, Angew. Chem. Int. Ed. 54, p. 4222, (2015).

    CAS  Google Scholar 

  29. 29.

    A.B. Abou Hammad, A.M. Elnahrawy, A.M. Youssef, A.M. Youssef, Int. J. Biol. Macromol. 125, 503 (2019)

    CAS  PubMed  Google Scholar 

  30. 30.

    A.M. El Nahrawy, A.M. Mansour, A.B. Abou, Hammad, A.R. Wassel, Mater. Res. Express 6, 016404 (2019)

    Google Scholar 

  31. 31.

    A. Tiraferri, P. Maroni, D. Caro, Rodríguez, M. Borkovec, Langmuir 30, 4980 (2014)

    CAS  PubMed  Google Scholar 

  32. 32.

    S.H. Sohrabnezhad, M.J. Mehdipour, Moghaddam, T. Salavatiyan, Spectrochim. Acta Part A 125, p. 73, (2014).

    CAS  Google Scholar 

  33. 33.

    A. Naz, S. Arun, S.S. Narvi, M.S. Alam, A. Singh, P. Bhartiya, P.K. Dutta, Int. J. Biol. Macromol. 110, 215 (2018)

    CAS  PubMed  Google Scholar 

  34. 34.

    S.A. Gaware, K.A. Rokade, S.N. Kale, J. Drug Deliv. Sci. Technol. 49, 345 (2019)

    CAS  Google Scholar 

  35. 35.

    A.M. ElNahrawy, A.B. AbouHammad, Int. J. PharmTech Res. 9, p. 16, (2016).

    CAS  Google Scholar 

  36. 36.

    T. Baran, A. Menteş, Int. J. Biol. Macromol. 79, 542 (2015)

    CAS  PubMed  Google Scholar 

  37. 37.

    S. Zarei, N. Farhadian, R. Akbarzadeh, M. Pirsaheb, A. Asadi, Z. Safaei, Int. J. Biol. Macromol. 145, pp. 926–935, (2019).

    PubMed  Google Scholar 

  38. 38.

    M.M. Elokr, F. Metawe, A.M. El-Nahrawy, B.A.A. Osman, Int. J. ChemTech Res. 9, 228 (2016)

    CAS  Google Scholar 

  39. 39.

    A.N. Alias, Z.M. Zabidi, A.M.M. Ali, M.K. Harun, Int. J. Appl. Sci. Technol. 3, 11 (2013)

    Google Scholar 

  40. 40.

    A.A.M.A.M.M. Farag, A.M.M. Mansour, A.H.H. Ammar, M.A.A. Rafea, Synth. Met. 161, 2135 (2011)

    CAS  Google Scholar 

  41. 41.

    N. Hassan, A.M.M. Mansour, N. Roushdy, A.A.M.A.M. Farag, W.G.G. Osiris, Optik (Stuttg) 158, p. 1255, (2018).

    CAS  Google Scholar 

  42. 42.

    A. Ziashahabi, R. Poursalehi, Procedia Mater. Sci. 11, 743 (2015)

    CAS  Google Scholar 

  43. 43.

    Y. Liu, Z. Xu, M. Yin, H. Fan, W. Cheng, L. Lu, Y. Song, J. Ma, X. Zhu, Nanoscale Res. Lett. 10, 374 (2015)

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    R. Zhao, T. Zhai, Z. Wang, Y. Wang, D. Liu, Appl. Phys. B 92, p. 585, (2008).

    CAS  Google Scholar 

  45. 45.

    T. Siddaiah, P. Ojha, N.O.G.V.R. Kumar, C. Ramu, T. Siddaiah, P. Ojha, N.O.G.V.R. Kumar, C. Ramu, Mater. Res. 21, e20170987 (2018)

    CAS  Google Scholar 

  46. 46.

    A.A.M. Farag, A.M. Mansour, A.H. Ammar, M.A. Rafea, A.M. Farid, J. Alloys Compd. 513, 404 (2012)

    CAS  Google Scholar 

  47. 47.

    T.A. Phung Hai, R. Sugimoto, RSC Adv. 8, 7005 (2018)

    CAS  Google Scholar 

  48. 48.

    A. Yoshikawa, H. Matsunami, Y. Nanishi, Wide Bandgap Semicond. Fundam. Prop. Mod. Photonic Electron Devices (Springer, Berlin, 2007), pp. 1–24.

  49. 49.

    V.S. Vavilov, Uspekhi Fiz. Nauk 164, 287 (1994)

    CAS  Google Scholar 

  50. 50.

    S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    Google Scholar 

  51. 51.

    H.D. Chandrashekara, B. Angadi, R. Shashidhar, L.C.S. Murthy, P. Poornima, in Mater. Today Proc. (Elsevier, 2016), pp. 2027–2034

  52. 52.

    K.R. Rajesh, C.S. Menon, Mater. Lett. 53, 329 (2002)

    CAS  Google Scholar 

  53. 53.

    T.G. Partha, R. Rathinamoorthy, T. Ramachandran, J. Text. Apparel Technol. Manag. 9(3), pp. 1–15, (2000).

    Google Scholar 

  54. 54.

    L.F. Zemljič, T. Tkavc, A. Vesel, O. Šauperl, Appl. Surf. Sci. 265, 697 (2013)

    Google Scholar 

  55. 55.

    S. Shankar, J.W. Rhim, Food Hydrocoll. 82, 116 (2018)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. M. Mansour.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Nahrawy, A.M., Mansour, A.M., Abou Hammad, A.B. et al. Optical, Functional Impact and Antimicrobial of Chitosan/Phosphosilicate/Al2O3 Nanosheets. J Inorg Organomet Polym 30, 3084–3094 (2020). https://doi.org/10.1007/s10904-020-01469-x

Download citation

Keywords

  • Chitosan–silicate
  • Composites
  • Sol–gel method
  • Optical band gap
  • Antimicrobial behavior