Thermal Degradation Behavior of a New Family of Organometallic Dendrimer

Abstract

Organometallic dendrimers are one of the most attractive macromolecules owing to their unique properties that derived from the combination of the metallic moieties and the remarkable architecture of the dendrimers. A new family of organoiron dendrimers has been synthesized using divergent methodology. To gain insight into the stability of these dendrimers, we investigated their thermal property using nonisothermal thermogravimetry analysis (TGA), which reveal the kinetic triplets, the pre-exponential factor, the effective activation energy and the reaction model involved in their thermal degradation. The results were obtained at heating rates of 10, 15 and 20 °C min−1. Four nonisothermal methods, the Friedman, the Ozawa and Flynn and Wall, the Kissinger–Akahira–Sunose and the Minimizing were used to investigate the variation of the effective activation energy with the extent of crystallization and, hence, with temperature. In addition, the activation energy was calculated from isothermal data. The degradation mechanism follows the Avrami–Erofeev mechanism for solid-state reaction models.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    B. Yang, Y. Zhao, S. Wang, Y. Zhang, C. Fu, Y. Wei, L. Tao, Synthesis of multifunctional polymers through the Ugi reaction for protein conjugation, macromolecules 47 (2014) 5607–5612.

  2. 2.

    S. Fuchs, A. Pla-Quintana, S. Mazeres, A.-M. Caminade, J.-P. Majoral, Cationic and fluorescent “Janus” dendrimers. Org. Lett. 10, 4751–4754 (2008)

    CAS  PubMed  Google Scholar 

  3. 3.

    J. Khandare, M. Calderon, N.-M. Dagia, R. Haag, Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem. Soc. Rev. 41, 2824–2848 (2012)

    CAS  PubMed  Google Scholar 

  4. 4.

    S. De, A. Khan, Efficient synthesis of multifunctional polymersviathiol-epoxy “click” chemistry. Chem. Commun. 48, 3130–3132 (2012)

    CAS  Google Scholar 

  5. 5.

    M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)

    CAS  PubMed  Google Scholar 

  6. 6.

    I. Gadwal, A. Khan, Protecting-group-free synthesis of chain-end multifunctional polymers by combining ATRP with thiol–epoxy ‘click’ chemistry. Polym. Chem. 4, 2440–2444 (2013)

    CAS  Google Scholar 

  7. 7.

    H. Zeng, H.C. Little, T.N. Tiambeng, G.A. Williams, Z. Guan, Multifunctional dendronized peptide polymer platform for safe and effective siRNA delivery. J. Am. Chem. Soc. 135, 4962–4965 (2013)

    CAS  PubMed  Google Scholar 

  8. 8.

    L. Persano, A. Camposeo, D. Pisignano, Integrated bottom-up and top-down soft lithographies and microfabrication approaches to multifunctional polymers. J. Mater. Chem. C 1, 7663–7680 (2013)

    CAS  Google Scholar 

  9. 9.

    A. Hirao, M. Hayashi, S. Loykulnant, K. Sugiyama, S.W. Ryu, N. Haraguchi, A. Matsuo, T. Higashihara, Precise syntheses of chain-multi-functionalized polymers, star-branched polymers, star-linear block polymers, densely branched polymers, and dendritic branched polymers based on iterative approach using functionalized 1,1-diphenylethylene derivatives. Prog. Polym. Sci. 30, 111–182 (2005)

    CAS  Google Scholar 

  10. 10.

    M.J. Dunlop, C. Agatemor, A.S. Abd-El-Aziz, R. Bissessur, Nanocomposites derived from molybdenum disulfide and an organoiron dendrimer. J. Inorg. Organomet. Polym. Mater. 27(Suppl. 1), S84–S89 (2017)

    Google Scholar 

  11. 11.

    S. Alaa, Abd-El-Aziz, Christian Agatemor, Emerging opportunities in the biomedical applications of dendrimers. J. Inorg. Organomet. Polym. Mater. 28, 369–382 (2018)

    Google Scholar 

  12. 12.

    M. Alsehli, S.Y. Al-Raqa, I. Kucukkaya, P.R. Shipley, B.D. Wagner, A.S. Abd-El-Aziz, Synthesis and photophysical properties of a series of novel porphyrin dendrimers containing organoiron complexes. J. Inorg. Organomet. Polym. Mater. 29, 628–641 (2019)

    CAS  Google Scholar 

  13. 13.

    S. Svenson, D.A. Tomalia, Dendrimers in biomedical applications-reflections on the field. Adv. Drug Delivery Rev. 64, 102–115 (2012)

    Google Scholar 

  14. 14.

    D.A. Tomalia, J.B. Christensen, U. Boas, Dendrimers, Dendrons, and Dendritic Polymers: Discovery, Applications, and the Future (Cambridge University Press, Cambridge, UK, 2012)

    Google Scholar 

  15. 15.

    A.R. Menjoge, R.M. Kannan, D.A. Tomalia, Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discovery Today 15, 171–185 (2010)

    CAS  PubMed  Google Scholar 

  16. 16.

    M. Samoc, J.P. Morrall, G.T. Dalton, M.P. Cifuentes, M.G. Humphrey, Two-photon and three-photon absorption in an organometallic dendrimer. Angew. Chem. Int. Ed. 46, 731–733 (2007)

    CAS  Google Scholar 

  17. 17.

    K. Onitsuka, N. Ohara, F. Takei, S. Takahashi, Organoruthenium dendrimers possessing tris(4-ethynylphenyl)amine bridges. Organometallics 27, 25–27 (2007)

    Google Scholar 

  18. 18.

    K.A. Green, M.P. Cifuentes, M. Samoc, M.G. Humphrey, Syntheses and NLO properties of metal alkynyl dendrimers. Coord. Chem. Rev. 255, 2025–2038 (2011)

    CAS  Google Scholar 

  19. 19.

    C. J. Jeffery, M. P. Cifuentes, G. T. Dalton, T. C. Corkery, M. D. Randles, A. C. Willis, M. Samoc, M. G. Humphrey, Organometallic complexes for nonlinear optics, 47 – synthesis and cubic optical nonlinearity of a stilbenylethynylruthenium dendrimer, macromol. rapid commun. 31 (2010) 846–849.

  20. 20.

    C.E. Powell, J.P. Morrall, S.A. Ward, M.P. Cifuentes, E.G. Notaras, M. Samoc, M.G. Humphrey, Dispersion of the third-order nonlinear optical properties of an organometallic dendrimer. J. Am. Chem. Soc. 126, 12234–12235 (2004)

    CAS  PubMed  Google Scholar 

  21. 21.

    A.M. McDonagh, M.G. Humphrey, M. Samoc, B. Luther-Davies, Organometallic complexes for nonlinear optics: 17.1 synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkynylruthenium dendrimer. Organometallics 18, 5195–5197 (1999)

    CAS  Google Scholar 

  22. 22.

    J. Alvarez, T. Ren, A.E. Kaifer, Redox potential selection in a new class of dendrimers containing multiple ferrocene centers. Organometallics 20, 3543–3549 (2001)

    CAS  Google Scholar 

  23. 23.

    J.R. Aranzaes, C. Belin, D. Astruc, Assembly of dendrimers with redox-active [{CpFe(mu3-CO)}4] clusters at the periphery and their application to oxo-anion and adenosine-5'-triphosphate sensing. Angew. Chem. Int. Ed. 45, 132–136 (2006)

    CAS  Google Scholar 

  24. 24.

    C.M. Casado, B. González, I. Cuadrado, B. Alonso, M. Morán, J. Losada, Mixed ferrocene-cobaltocenium dendrimers. Angew. Chem. Int. Ed. 39, 2135–2138 (2000)

    CAS  Google Scholar 

  25. 25.

    R. Djeda, A. Rapakousiou, L. Liang, N. Guidolin, J. Ruiz, D. Astruc, Click syntheses of 1,2,3-triazolylbiferrocenyl dendrimers and the selective roles of the inner and outer ferrocenyl groups in the redox recognition of ATP2- and Pd2+. Angew. Chem. Int. Ed. 49, 8152–8156 (2010)

    CAS  Google Scholar 

  26. 26.

    K. Takada, D.J. Díaz, H.D. Abruña, I. Cuadrado, B. González, C.M. Casado, B. Alonso, M. Morán, J. Losada, Cobaltocenium-functionalized poly(propylene imine) dendrimers: redox and electromicrogravimetric studies and AFM imaging. Chem. Eur. J. 7, 1109–1117 (2001)

    CAS  PubMed  Google Scholar 

  27. 27.

    S.M. Waybright, K. McAlpine, M. Laskoski, M.D. Smith, U.H. Bunz, Organometallic dendrimers based on (tetraphenylcyclobutadiene) cyclopentadienylcobalt modules. J. Am. Chem. Soc. 124, 8661–8666 (2002)

    CAS  PubMed  Google Scholar 

  28. 28.

    R. Djeda, C. Ornelas, J. Ruiz, D. Astruc, Branching the electron-reservoir complex [Fe(η5-C5H5)(η6-C6Me6)][PF6] onto large dendrimers: “click”, amide, and ionic bonds. Inorg. Chem. 49, 6085–6101 (2010)

    CAS  PubMed  Google Scholar 

  29. 29.

    Z. Cheng, D.L. Thorek, A. Tsourkas, Gadolinium-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew. Chem. Int. Ed. 49, 346–350 (2010)

    CAS  Google Scholar 

  30. 30.

    A.J.L. Villaraza, A. Bumb, M.W. Brechbiel, Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem. Rev. 110, 2921–2959 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    K. Luo, G. Liu, W. She, Q. Wang, G. Wang, B. He, H. Ai, Q. Gong, B. Song, Z. Gu, Gadolinium-labeled peptide dendrimers with controlled structures as potential magnetic resonance imaging contrast agents. Biomaterials 32, 7951–7960 (2011)

    CAS  PubMed  Google Scholar 

  32. 32.

    A.S. Abd-El-Aziz, E.A. Strohm, Transition metal-containing macromolecules: En route to new functional materials. Polymer 53, 4879–4921 (2012)

    CAS  Google Scholar 

  33. 33.

    M. Ottaviani, D. Appelhans, F. J. de la Mata, S. García-Gallego, A. Fattori, C. Coppola, M. Cangiotti, L. Fiorani, J. Majoral, Caminade, in Dendrimers in Biomedical Applications, 1st ed., (Eds: B. Klajnert, L. Peng, V. Ceña), RSC Publishing, Cambrigde, UK, 2013; p. 115.

  34. 34.

    Q.M. Kainz, O. Reiser, Polymer- and Dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. Acc. Chem. Res. 47, 667–977 (2014)

    CAS  PubMed  Google Scholar 

  35. 35.

    S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011)

    CAS  Google Scholar 

  36. 36.

    J. Farjas, P. Roura, Isoconversional analysis of solid-state transformations: a critical review. Part I. Single step transformations with constant activation energy. J. Therm. Anal. Calorim. 105, 757–766 (2011)

    CAS  Google Scholar 

  37. 37.

    S. Vyazovkin, K. Chrissafis, M.L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J.J. Suñol, ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta 590, 1–23 (2014)

    CAS  Google Scholar 

  38. 38.

    Z. Ma, J. Wang, Y. Yang, Y. Zhang, C. Zhao, Y. Yu, S. Wang, Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches. J. Anal. Appl. Pyrolysis 134, 12–24 (2018)

    CAS  Google Scholar 

  39. 39.

    N. Monika, V. Mulchandani, Katiyar, Generalized kinetics for thermal degradation and melt rheology for poly (lactic acid)/poly (butylene succinate)/functionalized chitosan based reactive nanobiocomposite. Int. J. Biol. Macromol. 141, 831–842 (2019)

    CAS  PubMed  Google Scholar 

  40. 40.

    A.A. Joraid, R.M. Okasha, C.L. Rock, A.S. Abd-El-Aziz, A nonisothermal study of organoiron poly(alkynyl methacrylate) coordinated to dicobalt hexacarbonyl using advanced kinetics modelling. J. Inorg. Organomet. Polym. Mater. 24, 121–127 (2014)

    CAS  Google Scholar 

  41. 41.

    M. Remanan, M. Kannan, R.S. Rao, S. Bhowmik, L. Varshney, M. Abraham, K. Jayanarayanan, Microstructure development, wear characteristics and kinetics of thermal decomposition of hybrid nanocomposites based on poly aryl ether ketone, boron carbide and multi walled carbon nanotubes. J. Inorg. Organomet. Polym. Mater. 27, 1649–1663 (2017)

    CAS  Google Scholar 

  42. 42.

    S. Ebrahimi, A. Shakeri, T. Alizadeh, Thermal decomposition of ammonium perchlorate in the presence of cobalt hydroxyl@nano-porous polyaniline, 29 (2019) 1716–1727.

  43. 43.

    A.A. Joraid, The effect of temperature on nonisothermal crystallization kinetics and surface structure of selenium thin films. Phys B 390, 263–269 (2007)

    CAS  Google Scholar 

  44. 44.

    A.A. Joraid, S.N. Alamri, A.A. Abu-Sehly, S.Y. Al-Raqa, P.O. Shipman, P.R. Shipley, A.S. Abd-El-Aziz, Isothermal kinetics and thermal degradation of an aryl azo dye-containing polynorbornene. Thermochim. Acta 515, 38–42 (2011)

    CAS  Google Scholar 

  45. 45.

    H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J. Polym. Sci. C 6, 183–195 (1964)

    Google Scholar 

  46. 46.

    T.A. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881–1886 (1965)

    CAS  Google Scholar 

  47. 47.

    J.H. Flynn, L.A. Wall, Thermal analysis of polymer by thermogravemetric analysis. J. Res. Natl. Bur. Stand. Sect. A 70, 487–523 (1966)

    CAS  Google Scholar 

  48. 48.

    S. Vyazovkin, Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J. Comput. Chem. 18, 393–402 (1997)

    CAS  Google Scholar 

  49. 49.

    S. Vyazovkin, Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22, 178–183 (2001)

    CAS  Google Scholar 

  50. 50.

    S. Vyazovkin, Isoconversional kinetics of thermally stimulated processes (Springer International Publishing, Switzerland, 2015)

    Google Scholar 

  51. 51.

    A.S. Abd-El-Aziz, E.K. Todd, R.M. Okasha, P.O. Shipman, T.E. Wood, Macromolecules containing redox-active neutral and cationic iron complexes. Macromolecules 38(38), 9411–9419 (2005)

    CAS  Google Scholar 

  52. 52.

    B. Roduit, Prediction of the progress of solid-state reactions under different temperature modes. Thermochim. Acta 388, 377–387 (2002)

    CAS  Google Scholar 

  53. 53.

    A.K. Burnham, L.N. Dinh, A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application prediction. J. Therm. Anal. Cal. 89, 479–490 (2007)

    CAS  Google Scholar 

  54. 54.

    B. Roduit, L. Xia, P. Folly, B. Berger, J. Mathieu, A. Sarbach, H. Andres, M. Ramin, B. Vogelsanger, D. Spitzer, H. Moulard, D. Dilhan, The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J. Therm. Anal. Cal. 93, 143–152 (2008)

    CAS  Google Scholar 

  55. 55.

    B. Roduit, W. Dermaut, A. Lunghi, P. Folly, B. Berger, A. Sarbach, Advanced kinetics-based simulation of time to maximum rate under adiabatic conditions. J. Therm. Anal. Cal. 93, 163–173 (2008)

    CAS  Google Scholar 

  56. 56.

    A.A. Joraid, I.M.A. Alhosuini, Effect of heating rate on the kinetics and mechanism of crystallization in amorphous Se85Te10Pb5 glasses. Thermochim. Acta 595, 28–34 (2014)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmad A. Joraid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joraid, A.A., Okasha, R.M., Al-Maghrabi, M.A. et al. Thermal Degradation Behavior of a New Family of Organometallic Dendrimer. J Inorg Organomet Polym 30, 2937–2951 (2020). https://doi.org/10.1007/s10904-020-01444-6

Download citation

Keywords

  • Organometallic dendrimer
  • Thermal degradation
  • Kinetic
  • Isoconversional methods
  • Kinetic model