Synthesis, Characterization and Thermal Studies of a Nanosized 1D l-Arginine/Copper(II) Coordination Polymer by Sonochemical Method: A New Precursor for Preparation of Copper(II) Oxide Nanoparticles

Abstract

In the present work, 1D-copper(II) coordination polymer, {[Cu(μ-l-Arg)2(H2O)]SO4}n (1); (l-Arg: l-Arginine), was synthesized and identified by elemental analysis, FT-IR spectroscopy, molar conductivity, thermal gravimetric analysis (TGA), differential thermal analysis (DTA) and single-crystal X-ray diffraction. The compound 1 was also prepared by a sonochemical process in the form of nanoparticles. The particle size and morphology of the synthesized nanoparticles were investigated by powder X-ray diffraction (PXRD) and field emission scanning electron microscopy (FE-SEM). In the crystal structure of 1, the copper atoms are coordinated in a distorted octahedral geometry. In this geometry, the cis-equatorial plane (N2O2) is constructed by two NO-donor l-Arg ligands. The remaining coordination sites in the apical positions are occupied by an oxygen atom of the neighboring l-Arg and the oxygen atom of a water molecule. In 1, infinite one-dimensional (1D) networks are constructed through carboxylate bridges. Finally, CuO nanoparticles were produced by thermal decomposition of the sonochemically prepared nanoparticles of 1, and characterized by FT-IR, XRD, FE-SEM and EDS.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38(5), 1477–1504 (2009)

    CAS  Article  Google Scholar 

  2. 2.

    K.-T. Wong, J.-M. Lehn, S.-M. Peng, G.-H. Lee, Chem. Commun. (2000). https://doi.org/10.1039/B005679K

    Article  Google Scholar 

  3. 3.

    K.-L. Zhang, N. Qiao, H.-Y. Gao, F. Zhou, M. Zhang, Polyhedron 26(12), 2461–2469 (2007)

    CAS  Article  Google Scholar 

  4. 4.

    A. Caneschi, D. Gatteschi, N. Lalioti, C. Sangregorio, R. Sessoli, G. Venturi, A. Vindigni, A. Rettori, M.G. Pini, M.A. Novak, Angew. Chem. Int. Ed. Engl. 40(9), 1760–1763 (2001)

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    S. Zang, Y. Su, Y. Li, Z. Ni, Q. Meng, Inorg. Chem. 45(1), 174–180 (2006)

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    M. Aoyagi, K. Biradha, M. Fujita, J. Am. Chem. Soc. 121(32), 7457–7458 (1999)

    CAS  Article  Google Scholar 

  7. 7.

    J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38(5), 1450–1459 (2009)

    CAS  Article  Google Scholar 

  8. 8.

    N. Fayaz Bakhsh, M.J. Soltanian Fard, P. Hayati, A. Masoudiasl, J. Janczak, J. Mol. Struct. 1200, 127020 (2020)

    CAS  Article  Google Scholar 

  9. 9.

    B.-Y. Lou, F.-L. Jiang, B.-L. Wu, D.-Q. Yuan, M.-C. Hong, Cryst. Growth Des. 6(4), 989–993 (2006)

    CAS  Article  Google Scholar 

  10. 10.

    D. Inci, R. Aydin, T. Sevgi, Y. Zorlu, E. Demirkan, J. Coord. Chem. 70(3), 512–543 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    A. Wojciechowska, A. Gągor, W. Zierkiewicz, A. Jarząb, A. Dylong, M. Duczmal, RSC Adv. 5(46), 36295–36306 (2015)

    CAS  Article  Google Scholar 

  12. 12.

    X. Yang, J.D. Ranford, J.J. Vittal, Cryst. Growth Des. 4(4), 781–788 (2004)

    CAS  Article  Google Scholar 

  13. 13.

    F. Shahangi Shirazi, K. Akhbari, Ultrason. Sonochem. 31, 51–61 (2016)

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    A. Morsali, H.H. Monfared, A. Morsali, C. Janiak, Ultrason. Sonochem. 23, 208–211 (2015)

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    A. Sonthila, P. Ruankham, S. Choopun, D. Wongratanaphisan, S. Phadungdhitidhada, A. Gardchareon, J. Phys. Conf. Ser. 901, 012097 (2017)

    Article  Google Scholar 

  16. 16.

    G. Borkow, R.C. Zatcoff, J. Gabbay, Med. Hypotheses 73(6), 883–886 (2009)

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    M.P. Rao, J.J. Wu, A.M. Asiri, S. Anandan, Water Sci. Technol. 75(6), 1421–1430 (2017)

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    K. Borgohain, J. Singh, M.R. Rao, T. Shripathi, S. Mahamuni, Phys. Rev. B 61(16), 11093 (2000)

    CAS  Article  Google Scholar 

  19. 19.

    A.A. Eliseev, A.V. Lukashin, A.A. Vertegel, L.I. Heifets, A.I. Zhirov, Y.D. Tretyakov, Mater. Res. Innov. 3(5), 308–312 (2000)

    CAS  Article  Google Scholar 

  20. 20.

    R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12(8), 2301–2305 (2000)

    CAS  Article  Google Scholar 

  21. 21.

    M. Salavati-Niasari, F. Davar, Mater. Lett. 63(3–4), 441–443 (2009)

    CAS  Article  Google Scholar 

  22. 22.

    F.H. Allen, Acta Cryst. B 58(3–1), 380–388 (2002)

    Article  Google Scholar 

  23. 23.

    L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 40(4), 786–790 (2007)

    CAS  Article  Google Scholar 

  24. 24.

    V. Petříček, M. Dušek, L. Palatinus Z, Kristallogr. Cryst. Mater. 229(5), 345–352 (2014)

    Google Scholar 

  25. 25.

    J. Rohlíček, M. Hušák, MCE2005—a new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Cryst. 40(3), 600–601 (2007)

    Article  Google Scholar 

  26. 26.

    G. Bergerhoff, M. Berndt, K. Brandenburg, J. Res. Natl. Inst. Stand. Technol. 101(3), 221 (1996)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    M. Hakimi, M. Alikhani, M. Mashreghi, N. Feizi, H. Raesi, Y. Mirzaie, V. Eigner, M. Dusek, J. Mol. Struct. 1186, 355–361 (2019)

    CAS  Article  Google Scholar 

  28. 28.

    H. Hemissi, M. Nasri, S. Abid, S. Al-Deyab, E. Dhahri, E. Hlil, M. Rzaigui, J. Solid State Chem. 196, 489–497 (2012)

    CAS  Article  Google Scholar 

  29. 29.

    R. Mrozek, Z. Rzaczyńska, M. Sikorska-Iwan, M. Jaroniec, T. Głowiak, Polyhedron 18(17), 2321–2326 (1999)

    CAS  Article  Google Scholar 

  30. 30.

    D.A. Köse, E. Toprak, E. Avcı, G.A. Avcı, O. Şahin, O. Büyükgüngör, J. Chin. Chem. Soc. 61(8), 881–890 (2014)

    Article  Google Scholar 

  31. 31.

    K. Nakamoto, K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th edn. (Wiley, New Jersey, 2009)

    Google Scholar 

  32. 32.

    R.W. Cheary, A.A. Coelho, J.P. Cline, Fundamental parameters line profile fitting in laboratory diffractometers. J. Res. Natl. Inst. Stand. Technol. 109(1), 1–25 (2004)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    M. Arfan, D.N. Siddiqui, T. Shahid, Z. Iqbal, Y. Majeed, I. Akram, R. Bagheri, Z. Song, A. Zeb, Result. Phys. 13, 102187 (2019)

    Article  Google Scholar 

  34. 34.

    X.-X. Cheng, S. Hojaghani, M.-L. Hu, M.H. Sadr, A. Morsali, Ultrason. Sonochem. 37, 614–622 (2017)

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    M. Nafees, M. Ikram, S. Ali, Dig. J. Nanomater. Biostruct. 10(2), 635–641 (2015)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Payame Noor University of Mashhad for support of this work. The crystallographic part was supported by the project 18-10504S of the Czech Science Foundation using instruments of the ASTRA laboratory established within the Operation program Prague Competitiveness—Project CZ.2.16/3.1.00/24510

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hakimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alikhani, M., Hakimi, M., Moeini, K. et al. Synthesis, Characterization and Thermal Studies of a Nanosized 1D l-Arginine/Copper(II) Coordination Polymer by Sonochemical Method: A New Precursor for Preparation of Copper(II) Oxide Nanoparticles. J Inorg Organomet Polym 30, 2907–2915 (2020). https://doi.org/10.1007/s10904-020-01442-8

Download citation

Keywords

  • Coordination polymer
  • Copper(II)
  • l-Arginine
  • Crystal structure
  • Thermal decomposition
  • Nanoparticles