Electronic Structure, Morphological Aspects, and Photocatalytic Discoloration of Three Organic Dyes with MgWO4 Powders Synthesized by the Complex Polymerization Method

Abstract

Heterogeneous photocatalytic (PC) degradation of organic dyes in aqueous solution with semiconductor oxides has been very effective in relation to conventional methods for the wastewater treatment. In this paper, MgWO4 powder was synthesized by the complex polymerization method and heat-treated at 900 °C for 2 h. Their structure, morphology and optical behavior were characterized by different techniques. First-principles quantum mechanical calculations based on the DFT in the B3LYP level was employed to obtain their electronic band structure (EBS) and density of state (DOS). Moreover, we have investigated the PC properties for the discoloration of three organic dyes. XRD patterns indicate that MgWO4 powders present a monoclinic structure. FE-SEM and TEM images showed that these powders are composed of several nanoparticles. UV–Vis spectrum displays an optical band gap of 4.33 eV, while EBS calculation showed a direct band gap value of 4.49 eV. DOS data revealed that the main orbitals involved in the electronic structure are O-2p orbitals in the valence band and W-5d orbitals in the conduction band. Finally, it was obtained the best PC activity of MgWO4 powders with discoloration of 84% for bromocresol green dye, while the discoloration for methyl orange and rhodamine B dyes were 56% and 29%, respectively.

Graphic Abstract

The electronic structure, morphology and photocatalytic properties of MgWO4 powders synthesized by complex polymerization method calcinated at 900 °C for 2 h have been explained for the first time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    G. Sharma, M. Naushad, D. Pathania, A. Kumar, Desalin. Water Treat. 57, 19443–19455 (2016)

    CAS  Google Scholar 

  2. 2.

    G. Sharma, A. Kumar, K. Devi, S. Sharma, M. Nausha, A.A. Ghfar, T. Ahama, F.J. Stadler, Int. J. Biol. Macromol. 114, 295–305 (2018)

    CAS  PubMed  Google Scholar 

  3. 3.

    G. Sharma, A. Kumar, M. Nausha, A. García-Peñas, A.H. Al-Muhtaseb, A.A. Ghfar, V. Sharma, T. Ahamad, F.J. Stadler, Carbohyd. Polym. 202, 444–453 (2018)

    CAS  Google Scholar 

  4. 4.

    G. Sharma, S. Bhogal, M. Naushad, A. Kumar, F.J. Stadler, J. Photochem. Photobiol. 347, 235–246 (2017)

    CAS  Google Scholar 

  5. 5.

    G. Sharma, B. Thakur, M. Naushad, A.H. Al-Muhtaseb, A. Kumar, M. Sillanpaa, G.T. Mola, Mater. Chem. Phys. 193, 129–139 (2017)

    CAS  Google Scholar 

  6. 6.

    G. Sharma, D. Pathania, M. Naushad, N.C. Kothiyal, Chem. Eng. J. 215, 413–421 (2014)

    Google Scholar 

  7. 7.

    G. Sharma, S. Bhogal, V.K. Gupta, S. Agarwal, A. Kumar, D. Pathania, G.T. Mola, F.J. Stadler, J. Mol. Liq. 275, 499–509 (2019)

    CAS  Google Scholar 

  8. 8.

    G. Sharmaa, A. Kumar, S. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, T. Ahamad, F.J. Stadler, Sep. Purif. Technol. 211, 895–908 (2019)

    Google Scholar 

  9. 9.

    T. Montini, V. Gombac, A. Hammed, L. Felisari, G. Adami, P. Fornasiero, Chem. Phys. Lett. 498, 113–119 (2010)

    CAS  Google Scholar 

  10. 10.

    H. Zhang, R.J. Bai, C. Lu, J. Li, Y.G. Xu, L.B. Kong, M.C. Liu, Ionics 25, 533–540 (2019)

    CAS  Google Scholar 

  11. 11.

    J. Ruiz-Fuertes, S. López-Moreno, D. Errandonea, J. Pellicer-Porres, R. Lacomba-Perales, A. Segura, P. Rodríguez-Hernández, A. Muñoz, A.H. Romero, J. González, J. Appl. Phys. 107, 083506–1–083506-10 (2010)

    Google Scholar 

  12. 12.

    M.A.P. Almeida, L.S. Cavalcante, M. Siu Li, J.A. Varela, E. Longo, J. Inor. Organomet. Polym. Mater. 22, 264–270 (2012)

    CAS  Google Scholar 

  13. 13.

    Q. Gou, O.J. Kleppa, Thermochim. Acta 288, 53–61 (1996)

    Google Scholar 

  14. 14.

    E.K. Kazenas, Y.V. Tsvetkov, I.O. Samoilova, G.K. Astakhova, A.A. Petrov, V.A. Volchenkova, Russ. Metall. (Metally) 2004, 320–324 (2004)

    Google Scholar 

  15. 15.

    M. del Arco, D. Carriazo, S. Gutiérrez, C. Martín, V. Rives, Inorg. Chem. 43, 375–384 (2004)

    PubMed  Google Scholar 

  16. 16.

    L. Jin-Qing, Y. Chuang-Tao, M. Jian-Xin, Chin. J. Lumin. 30, 327–331 (2009)

    Google Scholar 

  17. 17.

    Y. Zu, Y. Zhang, K. Xu, F. Zhao, RSC Adv. 6, 31046–31052 (2016)

    CAS  Google Scholar 

  18. 18.

    J.R. Günter, M. Amberg, Solid State Ion. 32(33), 141–146 (1989)

    Google Scholar 

  19. 19.

    M. Amberg, J.R. Günter, H. Schmalle, G. Blasse, J. Solid State Chem. 77, 162–169 (1988)

    CAS  Google Scholar 

  20. 20.

    L.L.Y. Chang, M.G. Scroger, B. Phillips, J. Am. Ceram. Soc. 49, 385–390 (1966)

    CAS  Google Scholar 

  21. 21.

    R.C. Pullar, S. Farrah, N.M. Alford, J. Eur. Ceram. Soc. 27, 1059–1063 (2007)

    CAS  Google Scholar 

  22. 22.

    V.B. Mikhailik, L. Vasylechko, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyy, J. Phys. Stud. 14, 3201-1–3201-11 (2010)

    Google Scholar 

  23. 23.

    M. Gancheva, A. Naydenov, R. Iordanova, D. Nihtianova, P. Stefanov, J. Mater. Sci. 50, 3447–3456 (2015)

    CAS  Google Scholar 

  24. 24.

    L. Zhang, Y. Huang, S. Sun, F. Yuan, Z. Lin, G. Wang, J. Lumin. 169, 161–164 (2016)

    CAS  Google Scholar 

  25. 25.

    C.S. Lim, Asian J. Chem. 24, 1519–1522 (2012)

    CAS  Google Scholar 

  26. 26.

    X. Feng, W. Feng, M. Xia, K. Wang, H. Liu, D. Deng, X. Qin, W. Yao, W. Zhu, RSC Adv. 6, 14826–14831 (2016)

    CAS  Google Scholar 

  27. 27.

    J. Li, C. Yang, J. Meng, J. Chin. Rare Earth Soc. 27, 730–734 (2009)

    CAS  Google Scholar 

  28. 28.

    N.R. Krutyak, D.A. Spassky, I.A. Tupitsyna, A.M. Dubovik, Opt. Spectr. 121, 45–51 (2016)

    CAS  Google Scholar 

  29. 29.

    L. Li, Y. Yu, G. Wang, L. Zhang, Z. Lin, CrystEngComm 15, 6083–6089 (2013)

    CAS  Google Scholar 

  30. 30.

    J. Huang, B. Tian, J. Wang, Y. Wang, W. Lu, Q. Li, L. Jin, C. Li, Z. Wang, CrystEngComm 20, 608–614 (2018)

    CAS  Google Scholar 

  31. 31.

    P.D. Bhuyan, D. Singh, S. Kansara, P. Yadav, S.K. Gupta, Y. Sonvane, S.K. Rout, E. Sinha, J. Mater. Sci. 52, 4934–4943 (2017)

    CAS  Google Scholar 

  32. 32.

    N. Krutyak, V.V. Mikhailin, D. Spassky, I.A. Tupitsyna, A.M. Dubovik, Inter. Conf. Oxide Mater. Electr. Eng. OMEE. 2012, 235–236 (2012)

    Google Scholar 

  33. 33.

    V.B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, L. Vasylechko, J. Phys. Cond. Matter. 20, 365219–1–365219-8 (2008)

    Google Scholar 

  34. 34.

    M. Guo, G. Dou, S. Gong, D. Zhou, J. Eur. Ceram. Soc. 32, 883–890 (2012)

    CAS  Google Scholar 

  35. 35.

    M. Guo, G. Dou, G. Li, S. Gong, J. Mater. Sci. Mater. Electr. 26, 608–612 (2015)

    CAS  Google Scholar 

  36. 36.

    R. Ullah, R.N. Malik, A. Qadir, Afr. J. Environ. Sci. Technol. 3, 429–446 (2009)

    CAS  Google Scholar 

  37. 37.

    D.M.A. Costa, A.C.B. Júnior, Holos. 21, 81–101 (2005)

    Google Scholar 

  38. 38.

    F.C.C. Assis, S. Albeniz, A. Gil, S.A. Korili, R. Trujillano, M.A. Vicente, L. Marçal, M. Saltarelli, K.J. Ciuffi, Desalin. Water Treat. 39, 316–322 (2012)

    CAS  Google Scholar 

  39. 39.

    L.F. Fernandes, A.C. Wosiak, L. Domingues, C.V. Pacheco, P.E. Lagos, Curitiba: Sanepar v. 1: 1–500 (2005)

  40. 40.

    Z. Carmen, S. Daniela, Organic pollutants ten years after the stockholm convention—environmental and analytical update (InTech, Croatia, 2012), pp. 55–86. Chapter 3

    Google Scholar 

  41. 41.

    Y. Na, S. Song, Y. Park, Korean J. Chem. Eng. 22, 196–200 (2005)

    CAS  Google Scholar 

  42. 42.

    M. Soylak, Y.E. Unsal, E. Yilmaz, M. Tuzen, Food Chem. Toxicol. 49, 1796–1799 (2011)

    CAS  PubMed  Google Scholar 

  43. 43.

    R. Jain, M. Mathur, S. Sikarwar, A. Mittal, J. Environ. Manage. 85, 956–964 (2007)

    CAS  PubMed  Google Scholar 

  44. 44.

    R.G. Sandberg, G.H. Henderson, R.D. White, E.M. Eyring, J. Phys. Chem. 76, 4023–4025 (1972)

    CAS  Google Scholar 

  45. 45.

    R.A.G. de Oliveira, T.B. Zanoni, G.G. Bessegato, D.P. Oliveira, G.A. Umbuzeiro, Quim. Nova. 37, 1037–1046 (2014)

    Google Scholar 

  46. 46.

    A.A.L.R. Al-Rubaie, R.J. Mhessn, E-J. Chem. 9, 465–470 (2012)

    Google Scholar 

  47. 47.

    L.F. Silva, O.F. Lopes, V.R. Mendonça, K.T.G. Carvalho, E. Longo, Photochem. Photobiol. 92, 371–378 (2016)

    PubMed  Google Scholar 

  48. 48.

    W. Xin, D. Zhu, G. Liu, Y. Hua, W. Zhou, Int. J. Photoenergy. 2012, 767905–1–767905-7 (2012)

    Google Scholar 

  49. 49.

    F.R. Zaggout, J. Disper. Sci. Technol. 26, 757–761 (2005)

    CAS  Google Scholar 

  50. 50.

    S. Delanghe, W. Van Biesen, N. Van de Velde, S. Eloot, A. Pletinck, E. Schepers, G. Glorieux, J.R. Delanghe, M.M. Speeckaert, Clin. Chem. Lab. Med. 56, 436–440 (2018)

    CAS  PubMed  Google Scholar 

  51. 51.

    I. Kazeminezhad, A. Sadollahkhani, J. Mater. Sci.: Mater. Electr. 27, 4206–4215 (2016)

    CAS  Google Scholar 

  52. 52.

    K. Kabra, R. Chaudhary, R.L. Sawhney, Ind. Eng. Chem. Res. 43, 7683–7696 (2004)

    CAS  Google Scholar 

  53. 53.

    L.S. Cavalcante, J.C. Sczancoski, V.C. Albarici, J.M.E. Matos, J.A. Varela, Mater. Sci. Eng. B. 150, 18–25 (2008)

    CAS  Google Scholar 

  54. 54.

    J.W. England, J. Pharmacol. Sci. 1, 440–443 (1912)

    CAS  Google Scholar 

  55. 55.

    T. Salmi, E. Paatero, P. Nyholm, Chem. Eng. Process. Process Intensif. 43, 1487–1493 (2004)

    CAS  Google Scholar 

  56. 56.

    M. Kakihana, M. Yoshimura, Bull. Chem. Soc. Jpn. 72, 1427–1443 (1999)

    CAS  Google Scholar 

  57. 57.

    H.M. Rietveld, J. Appl. Crystallogr. 2, 65–71 (1969)

    CAS  Google Scholar 

  58. 58.

    M. Bortolotti, L. Lutterotti, I. Lonardelli, J. Appl. Cryst. 42, 538–539 (2009)

    CAS  Google Scholar 

  59. 59.

    L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, H.R. Wenk, Z. Kristallogr, Krist. 26, 125–130 (2007)

    Google Scholar 

  60. 60.

    M. Bortolotti, I. Lonardelli, J. Appl. Cryst. 46, 259–261 (2013)

    CAS  Google Scholar 

  61. 61.

    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

    CAS  Google Scholar 

  62. 62.

    R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D’Arco, M. Llunel, M. Causà, Y. Noël, CRYSTAL14 User’s Manual, Italy (2014)

  63. 63.

    A.D. Becke, J. Chem. Phys. 96, 2155–2160 (1992)

    CAS  Google Scholar 

  64. 64.

    A.F. Gouveia, J.C. Sczancoski, M.M. Ferrer, A.S. Lima, M.R.M.C. Santos, M. Siu lI, R.S. Santos, E. Longo, L.S. Cavalcante, Inorg. Chem. 53, 5589–5599 (2014)

    CAS  PubMed  Google Scholar 

  65. 65.

    http://www.crystal.unito.it/basis-sets.php

  66. 66.

    F. Corà, A. Patel, N.M. Harrison, R. Dovesi, C.R.A. Catlow, J. Am. Chem. Soc. 118, 12174–12182 (1996)

    Google Scholar 

  67. 67.

    R.C. de Oliveira, L. Gracia, M. Assis, M. Siu Li, J. Andres, L.S. Cavalcante, E. Longo, CrystEngComm 18, 6483–6491 (2016)

    Google Scholar 

  68. 68.

    E.L.S. Souza, J.C. Sczancoski, I.C. Nogueira, M.A.P. Almeida, M.O. Orlandi, M.S. Li, R.A.S. Luz, M.G.R. Filho, E. Longo, L.S. Cavalcante, Ultrason. Sonochem. 38, 256–270 (2017)

    CAS  PubMed  Google Scholar 

  69. 69.

    O.S. Filipenko, E.A. Pobedimskaya, V.I. Ponomarev, N.V. Belov, Kristallogr. 13, 1073–1075 (1968)

    CAS  Google Scholar 

  70. 70.

    H.M. Rietveld, Acta Crystallogr. 22, 151–152 (1967)

    CAS  Google Scholar 

  71. 71.

    K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653–658 (2008)

    CAS  Google Scholar 

  72. 72.

    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272–1276 (2011)

    CAS  Google Scholar 

  73. 73.

    L.S. Cavalcante, E. Moraes, M.A.P. Almeida, C.J. Dalmaschio, N.C. Batista, J.A. Varela, E. Longo, M. Siu Li, J. Andrés, A. Beltrán, Polyhedron 54, 13–25 (2013)

    CAS  Google Scholar 

  74. 74.

    R.A. Smith, Semiconductors, 2nd edn. (Cambridge University Press, London, 1978), pp. 1–535

    Google Scholar 

  75. 75.

    J. Meng, T. Chen, X. Wei, J. Wei, J. Li, Z. Zhang, RSC Adv. 9, 2567–2571 (2019)

    CAS  Google Scholar 

  76. 76.

    R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, A. Segura, Europhys. Lett. 83, 37002–37006 (2008)

    Google Scholar 

  77. 77.

    S. Dey, R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Inorg. Chem. 53, 4394–4399 (2014)

    CAS  PubMed  Google Scholar 

  78. 78.

    S. Wannapop, T. Thongtem, S. Thongtem, Appl. Surf. Sci. 258, 4971–4976 (2012)

    CAS  Google Scholar 

  79. 79.

    I.A. Kamenskikh, V.N. Kolobanov, V.V. Mikhailin, I.N. Shpinkov, D.A. Spassky, Nucl. Instr. Meth. Phys. Res A. 467–468, 1423–1425 (2001)

    Google Scholar 

  80. 80.

    E.A.A. Júnior, F.X. Nobre, G.S. Sousa, L.S. Cavalcante, M.R.M.C. Santos, F.L. Souza, J.M.E. de Matos, RSC Adv. 7, 24263–24281 (2017)

    Google Scholar 

  81. 81.

    Y. Zhao, C. Li, X. Liu, F. Gu, J. Alloys Compd. 440, 281–286 (2007)

    CAS  Google Scholar 

  82. 82.

    T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B. 102, 5845–5851 (1998)

    CAS  Google Scholar 

  83. 83.

    I. Fajriati, M. Mudasir, E.T. Wahyuni, Int. J. Adv. Chem. Eng. Biol. Sci. 1, 21–24 (2014)

    Google Scholar 

  84. 84.

    T. Chen, Y. Zheng, J.-M. Lin, G. Chen, J. Am. Soc. Mass Spectr. 19, 997–1003 (2008)

    CAS  Google Scholar 

  85. 85.

    H. Lee, Y.K. Park, S.J. Kim, B.H. Kim, H.S. Yoon, S.-C. Jung, J. Ind. Eng. Chem. 35, 205–210 (2016)

    CAS  Google Scholar 

  86. 86.

    G. Sharma, A. Kumar, S. Sharma, M. Naushad, T. Ahamad, A.H. Al-Muhtaseb, M. Naushad, F.J. Stadler, S.I. Al-Saeedi, G.M. Al-Senani, N.S. Al-kadhi, F.J. Stadler, J. Mol. Liq. 272, 170–179 (2018)

    CAS  Google Scholar 

  87. 87.

    G. Sharma, D.D. Dionysiou, S. Sharma, A. Kumar, A.H. Al-Muhtaseb, M. Naushad, F.J. Stadler, Catal. Today. 335, 437–451 (2019)

    CAS  Google Scholar 

  88. 88.

    W. Zhong, T. Jiang, Y. Dang, J. He, S.Y. Chen, Appl. Catal. A. Gen. 549, 302–309 (2018)

    CAS  Google Scholar 

  89. 89.

    M.U.D. Sheikh, G.A. Naikoo, M. Thomas, M. Bano, F. Khan, New J. Chem. 40, 5483–5494 (2016)

    CAS  Google Scholar 

  90. 90.

    S. Xie, P. Huang, J.J. Kruzic, X. Zeng, H. Qian, Sci. Rep. 6, 21947–21956 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    S. Yang, C. Ye, X. Song, L. He, F. Liao, RSC Adv. 4, 54810–54818 (2014)

    CAS  Google Scholar 

  92. 92.

    B. Saha, S. Das, J. Saikia, G. Das, J. Phys. Chem. C. 115, 8024–8033 (2011)

    CAS  Google Scholar 

  93. 93.

    L. Parimala, J. Santhanalakshmi, React. Kinet. Mech. Catal. 109, 393–403 (2013)

    CAS  Google Scholar 

  94. 94.

    J. Xiao, H. Zhang, Y. Xia, Z. Li, W. Huang, RSC Adv. 6, 39861–39869 (2016)

    CAS  Google Scholar 

  95. 95.

    V.N. Kolosov, V.M. Orlov, M.N. Miroshnichenko, T.Yu. Prokhorova. IOP Conf Ser Mater Sci Eng 704, 012011 (2019)

    Google Scholar 

  96. 96.

    C. Martín, P. Malet, V. Rives, G. Solana, J. Catal. 169, 516–526 (1997)

    Google Scholar 

  97. 97.

    R.A. Roca, J.C. Sczancoski, I.C. Nogueira, M.T. Fabbro, H.C. Alves, L. Gracia, L.P.S. Santos, C.P. de Sousa, J. Andrés, G.E. Luz Jr., E. Longo, L.S. Cavalcante, Catal. Sci. Technol. 5, 4091–4107 (2015)

    CAS  Google Scholar 

  98. 98.

    L.S. Cavalcante, F.M.C. Batista, M.A.P. Almeida, A.C. Rabelo, I.C. Nogueira, N.C. Batista, J.A. Varela, M.R.M.C. Santos, E. Longo, M. Siu Li, RSC Adv. 2, 6438–6454 (2012)

    CAS  Google Scholar 

  99. 99.

    L.S. Cavalcante, J.C. Sczancoski, N.C. Batista, E. Longo, J.A. Varela, M.O. Orlandi, Adv. Powder Technol. 24, 344–353 (2013)

    CAS  Google Scholar 

  100. 100.

    G. Botelho, J. Andres, L. Gracia, L.S. Matos, E. Longo, ChemPlusChem. 81, 202–212 (2016)

    CAS  PubMed  Google Scholar 

  101. 101.

    G. Byzynski, C. Melo, D.P. Volanti, M.M. Ferrer, A.F. Gouveia, C. Ribeiro, J. Andrés, E. Longo, Mater. Des. 120, 363–375 (2017)

    CAS  Google Scholar 

  102. 102.

    W.S. Pereira, J.C. Sczancoski, Y.N.C. Calderon, V.R. Mastelaro, G. Botelho, T.R. Machado, E.R. Leite, E. Longo, Appl. Surf. Sci. 440C, 61–72 (2018)

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support of the Brazilian research financing institutions: CNPq (304531/2013-8, 150949/2018-9, 312318/2017-0 and 479644/2012-8), FAPESP (2012/14004-5, 2013/26671-9 and 2017/11986-5), and CAPES.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. S. Cavalcante.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 349 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gouveia, A.F., Vieira, V.E.M., Sczancoski, J.C. et al. Electronic Structure, Morphological Aspects, and Photocatalytic Discoloration of Three Organic Dyes with MgWO4 Powders Synthesized by the Complex Polymerization Method. J Inorg Organomet Polym 30, 2952–2970 (2020). https://doi.org/10.1007/s10904-019-01435-2

Download citation

Keywords

  • MgWO4 powders
  • Rietveld refinement
  • Electronic band structure
  • Density of states
  • Photocatalysis