Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study

Abstract

Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp nanoparticles were synthesized using wet chemical method. XRD studies verified the nano-scale size of the prepared HAp. In addition to Ca and P in the prepared n-HAp, the EDX analysis revealed the presence of Mg in the doped HAp samples. FTIR studies confirmed the existence of the characteristic functional groups of the scaffold constituents. The swelling behavior was found to be dependent on the quantity of embedded HAp nanoparticles. Nanocomposite scaffold porosity ranged from 26 to 39%, which increased with the inclusion of Mg ions. The developed scaffolds showed appropriate mechanical properties that enhanced by the existence of HAp nanoparticles. The incorporation of the Mg-doped HAp nanoparticles encourages the development of bone-like apatite layer. In vitro cytotoxicity assessment and blood compatibility demonstrated their biocompatibility. The developed scaffolds show promising antibacterial activity against Staphylococcus aureus and Escherichia coli. In vitro drug release study showed that the loaded Ketoprofen scaffolds were able to deliver the loaded drug sustainably.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    H.C. Pape, A. Evans, P. Kobbe, J. Orthop. Trauma 24(Suppl 1), S36–S40 (2010)

    PubMed  Google Scholar 

  2. 2.

    W. Wang, K.W.K. Yeung, Bioact. Mater. 2, 224–247 (2017)

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    S. Caddeo, M. Boffito, S. Sartori, Front. Bioeng. Biotechnol. 5, 40 (2017)

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    F. Zhao, D. Yao, R. Guo, L. Deng, A. Dong, J. Zhang, Nanomaterials 5, 2054–2130 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Z.-Y. Qiu, I.-S. Noh, S.-M. Zhang, Front. Mater. Sci. 7, 40–50 (2013)

    Google Scholar 

  6. 6.

    J.R. Ramya, K.T. Arul, P. Sathiamurthi, K. Asokan, S.N. Kalkura, Ceram. Int. 42, 11045–11054 (2016)

    CAS  Google Scholar 

  7. 7.

    V.K. Bommala, M.G. Krishna, C.T. Rao, J. Magnes, Alloys 7, 72–79 (2019)

    CAS  Google Scholar 

  8. 8.

    Y.L. Lam, S. Muniyandy, H. Kamaruddin, A. Mansor, P. Janarthanan, Radiat. Phys. Chem. 106, 213–222 (2015)

    CAS  Google Scholar 

  9. 9.

    D.J. Hickey, B. Ercan, L. Sun, T.J. Webster, Acta Biomater. 14, 175–184 (2015)

    CAS  PubMed  Google Scholar 

  10. 10.

    C.Y. Tan, A. Yaghoubi, S. Ramesh, S. Adzila, J. Purbolaksono, M.A. Hassan, M.G. Kutty, Ceram. Int. 39, 8979–8983 (2013)

    CAS  Google Scholar 

  11. 11.

    S. Shanmugam, B. Gopal, Ceram. Int. 40, 15655–15662 (2014)

    CAS  Google Scholar 

  12. 12.

    A. Oyane, H.-M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, J. Biomed. Mater. Res. Part A 65A, 188–195 (2003)

    CAS  Google Scholar 

  13. 13.

    T. Kokubo, H. Takadama, Biomaterials 27, 2907–2915 (2006)

    CAS  PubMed  Google Scholar 

  14. 14.

    S.R.K. Meka, V. Agarwal, K. Chatterjee, Mater. Sci. Eng. C 94, 565–579 (2019)

    CAS  Google Scholar 

  15. 15.

    N. Ninan, Y. Grohens, A. Elain, N. Kalarikkal, S. Thomas, Eur. Polym. J. 49, 2433–2445 (2013)

    CAS  Google Scholar 

  16. 16.

    A. Koç Demir, A.E. Elçin, Y.M. Elçin, Mater. Sci. Eng. C 89, 8–14 (2018)

    Google Scholar 

  17. 17.

    W.-C. Lin, D.-G. Yu, M.-C. Yang, Coll. Surf. B: Biointerfaces 47, 43–49 (2006)

    CAS  Google Scholar 

  18. 18.

    C. Gao, S. Ito, A. Obata, T. Mizuno, J.R. Jones, T. Kasuga, Polymer 91, 106–117 (2016)

    CAS  Google Scholar 

  19. 19.

    M. Abdellahi, A. Najafinezhad, H. Ghayour, S. Saber-Samandari, A. Khandan, J. Mech. Behav. Biomed. Mater. 72, 171–181 (2017)

    CAS  PubMed  Google Scholar 

  20. 20.

    B. Gayathri, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhosh, V. Asokan, Arab. J. Chem. 11, 645–654 (2018)

    Google Scholar 

  21. 21.

    O. Kaygili, S. Keser, N. Bulut, T. Ates, Physica B: Condens. Matter 537, 63–67 (2018)

    CAS  Google Scholar 

  22. 22.

    N. Kanasan, S. Adzila, H.A. Rahman, N. Bano, G. Panerselvan, N.A. Hidayati, Key Eng. Mater. 791, 45–49 (2018)

    Google Scholar 

  23. 23.

    D. Laurencin, N. Almora-Barrios, N.H. de Leeuw, C. Gervais, C. Bonhomme, F. Mauri, W. Chrzanowski, J.C. Knowles, R.J. Newport, A. Wong, Z. Gan, M.E. Smith, Biomaterials 32, 1826–1837 (2011)

    CAS  PubMed  Google Scholar 

  24. 24.

    A.Z. Alshemary, M. Akram, Y.-F. Goh, U. Tariq, F.K. Butt, A. Abdolahi, R. Hussain, Ceram. Int. 41, 11886–11898 (2015)

    CAS  Google Scholar 

  25. 25.

    M.M. Islam, A. Zaman, M.S. Islam, M.A. Khan, M.M. Rahman, Prog. Biomater. 3, 21 (2014)

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    A.M. Hamdani, I.A. Wani, A. Gani, N.A. Bhat, F.A. Masoodi, Innov. Food Sci. Emerg. Technol. 44, 74–82 (2017)

    CAS  Google Scholar 

  27. 27.

    A.W.M. El-Naggar, M.M. Senna, T.A. Mostafa, R.H. Helal, Int. J. Biol. Macromol. 102, 1045–1051 (2017)

    CAS  PubMed  Google Scholar 

  28. 28.

    B.G. Ershov, Russ. Chem. Rev. 67, 315–334 (1998)

    Google Scholar 

  29. 29.

    K. Benfattoum, N. Haddadine, N. Bouslah, A. Benaboura, P. Maincent, R. Barillé, A. Sapin-Minet, M.S. El-Shall, Polym. Adv. Technol. 29, 884–895 (2018)

    CAS  Google Scholar 

  30. 30.

    H. Ichiura, M. Morikawa, K. Fujiwara, J. Mater. Sci. 40, 1987–1991 (2005)

    CAS  Google Scholar 

  31. 31.

    R. Morsy, Roman. J. Biophys. 26, 83–92 (2016)

    Google Scholar 

  32. 32.

    E.A. Abdel-Razik, D.M. Ayaad, A. Elbedwehy, Int. J. Modern. Org. Chem. 2(2), 191–206 (2013)

    CAS  Google Scholar 

  33. 33.

    J. Li, H. Sun, D. Sun, Y. Yao, F. Yao, K. Yao, Carbohydr. Polym. 85, 885–894 (2011)

    CAS  Google Scholar 

  34. 34.

    M. Kazemzadeh Narbat, M. Solati Hashtjin, M. Pazouki, Iran. J. Biotechnol. 4, 54–60 (2003)

    Google Scholar 

  35. 35.

    S. Dasgupta, S.S. Banerjee, A. Bandyopadhyay, S. Bose, Langmuir 26, 4958–4964 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, L. Cheng, Biomaterials 28, 3338–3348 (2007)

    CAS  PubMed  Google Scholar 

  37. 37.

    A.J. Salgado, O.P. Coutinho, R.L. Reis, Macromol. Biosci. 4, 743–765 (2004)

    CAS  PubMed  Google Scholar 

  38. 38.

    W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, S. Karl, Mater. Sci. Eng. A 362, 40–60 (2003)

    Google Scholar 

  39. 39.

    X. Cai, H. Tong, X. Shen, W. Chen, J. Yan, J. Hu, Acta Biomater. 5, 2693–2703 (2009)

    CAS  PubMed  Google Scholar 

  40. 40.

    K. Maji, S. Dasgupta. Comparative study on Mechanical Strength of Macroporous Hydroxyapatite-Biopolymer Based Composite Scaffold. International Conference on Advances in Engineering and Technology (ICAET'2014), Singapore, 29–30 March 2014.

  41. 41.

    M. Jayabalan, K.T. Shalumon, M. Mitha, K. Ganesan, M. Epple, Acta Biomater. 6(3), 763–775 (2009)

    PubMed  Google Scholar 

  42. 42.

    J. Zheng, C.Z. Wang, X.X Wang, H.Y. Wang, H. Zhuang, F. Yao. React. Funct. Polym. 67, 780–788 (2007).

    CAS  Google Scholar 

  43. 43.

    A. Marques, R.L. Reis, Mater. Sci. Eng. C 25, 215–229 (2005)

    Google Scholar 

  44. 44.

    H. Bundela, eXpress Polym. Lett. 2, 201–213 (2008)

    CAS  Google Scholar 

  45. 45.

    Y.C. Nho, O.H. Kwon, C. Jie, Radiat. Phys. Chem. 64, 67–75 (2002)

    CAS  Google Scholar 

  46. 46.

    A. Chaturvedi, A.K. Bajpai, J. Bajpai, S.K. Singh, Mater. Sci. Eng. C 65, 408–418 (2016)

    CAS  Google Scholar 

  47. 47.

    X. Yang, K. Yang, S. Wu, X. Chen, F. Yu, J. Li, M. Ma, Z. Zhu, Radiat. Phys. Chem. 79, 606–611 (2010)

    CAS  Google Scholar 

  48. 48.

    B. Gayathri, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhosh, V. Asokan, Arab. J. Chem. 11, 645–654 (2016)

    Google Scholar 

  49. 49.

    T. Nagyné-Kovács, L. Studnicka, A. Kincses, G. Spengler, M. Molnár, M. Tolner, I. Endre Lukács, I. Szilágyi, G. Pokol, Ceram. Int. 44, 22976–22982 (2018)

    Google Scholar 

  50. 50.

    G. Devanand Venkatasubbu, S. Ramasamy, V. Ramakrishnan, J. Kumar, 3 Biotech 1, 173–186 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    M.P. Ginebra, T. Traykova, J.A. Planell, J. Controlled Release 113, 102–110 (2006)

    CAS  Google Scholar 

  52. 52.

    E. Kontonasaki, T. Zorba, L. Papadopoulou, E. Pavlidou, X. Chatzistavrou, K. Paraskevopoulos, P. Koidis, Cryst. Res. Technol. 37, 1165–1171 (2002)

    CAS  Google Scholar 

  53. 53.

    I.B. Leonor, H.-M. Kim, F. Balas, M. Kawashita, R.L. Reis, T. Kokubo, T. Nakamura, J. Mater. Chem. 17, 4057–4063 (2007)

    CAS  Google Scholar 

  54. 54.

    P. Zhu, Y. Masuda, K. Koumoto, Biomaterials 25, 3915–3921 (2004)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their deep gratitude to Dr. Asmaa Abu-Bakr Hassan, Associate Professor, Radiation Biology Department, National Center for Radiation Research and Technology, for performing cytotoxicity evaluation and her fruitful discussion. Also, deep gratitude to Dr. Eman Araby, Associate Professor, Radiation Microbiology Department, National Center for Radiation Research and Technology, for antibacterial assessment and her good interpretation and discussion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amany I. Raafat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raafat, A.I., Kamal, H., Sharada, H.M. et al. Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study. J Inorg Organomet Polym 30, 2890–2906 (2020). https://doi.org/10.1007/s10904-019-01418-3

Download citation

Keywords

  • Radiation copolymerization
  • Scaffold
  • Bone regeneration
  • Acacia gum
  • Gelatin
  • Mg-doped hydroxyapatite