Skip to main content
Log in

Synthesis of CuO Nanocrystals Supported on Multiwall Carbon Nanotubes for Nanothermite Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Multiwall carbon nanotubes (MWNTs) can ofer high surface area (> 700 m2/g). MWNTs functionalized with energetic groups can find wide applications in advanced energetic systems. We coat MWNTs with copper through electroless plating and subsequently anneal the hybrid Cu-MWNT material at 250 °C to develop CuO-MWNT. TEM micrographs showed that MWNTs of 20–30 nm and 5–10 nm outer and inner diameters and 0.5–2.0 µm length were homogeneously decorated with CuO nanoparticles; XRD diffractograms revealed highly crystalline structure. Since CuO particles can act as effective oxidizer for aluminium in nanothermite applications. CuO-MWNTs were effectively dispersed with aluminium nanoparticles (100 nm) in isopropyl alcohol; subsequently colloidal nanothermite particles were dispersed into molten tri-nitro toluene (TNT). Upon initiation, the nanothermite colloid offered not only an increase in the shock wave strength of TNT by 29% using ballistic mortar test; but also an increae in brisance (destructive effect) by 15.6%. Futhermore the developed hybrid nanothermite offered an increase in the total heat release by 108% using DSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Chen et al., “Carbon-nanotube metal-matrix composites prepared by electroless plating”. Compos. Sci. Technol. 60, 301–306 (2000)

    Article  CAS  Google Scholar 

  2. A. Peigney et al., “Specific surface area of carbon nanotubes and bundles of carbon nanotubes,” Carbon, 39, 507–514, 2001

    Article  CAS  Google Scholar 

  3. Q.-L. Yan et al., “Highly energetic compositions based on functionalized carbon nanomaterials” Nanoscale, 8, 4799–4851, (2016)

    Article  CAS  PubMed  Google Scholar 

  4. M. Keidar et al., “Current-driven ignition of single-wall carbon nanotubes” Carbon, 44, 1022–1024, (2006)

    Article  CAS  Google Scholar 

  5. X. LIU et al., “Synthesis of CuO/CNTs composites and its catalysis on thermal decomposition of FOX-12 [J]”. J. Sol. Rocket Technol. 5, 019 (2008)

    Google Scholar 

  6. A.A. Sahraei et al., “Formation of homogenous copper film on MWCNTs by an efficient electroless deposition process”. Sci. Eng. Compos. Mater. 24, 345–352 (2017)

    Article  CAS  Google Scholar 

  7. S. Arai, M. Endo, “Carbon nanofiber–copper composite powder prepared by electrodeposition. Electrochem. Commun 5, 797–799 (2003)

    Article  CAS  Google Scholar 

  8. S. Arai et al., “Ni-deposited multi-walled carbon nanotubes by electrodeposition” Carbon, 42, 641–644, (2004)

    Article  CAS  Google Scholar 

  9. K. Yamagishi et al., “Adsorbates formed on non-conducting substrates by two-step catalyzation pretreatment for electroless plating”. Hyomen Gijutsu (J. Surf. Finish. Soc. Jpn.) 54, 150–154 (2003)

    Article  CAS  Google Scholar 

  10. T. Van Gestel et al., “Manufacturing of new nano-structured ceramic–metallic composite microporous membranes consisting of ZrO 2, Al 2 O 3, TiO 2 and stainless steel”. Sol. State Ion. 179, 1360–1366 (2008)

    Article  CAS  Google Scholar 

  11. A.M. Abdalla et al., “Fabrication of nanoscale to macroscale nickel-multiwall carbon nanotube hybrid materials with tunable material properties”. Mater. Res. Express 3, 125014 (2016)

    Article  CAS  Google Scholar 

  12. Q. Li et al., “Coating of carbon nanotube with nickel by electroless plating method”. Jpn. J. Appl. Phys. Part 2 Lett. 36, 501–503 (1997)

    Article  Google Scholar 

  13. V.P. Menon, C.R. Martin, Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 67, 1920–1928 (1995)

    Article  CAS  Google Scholar 

  14. P. Sahoo, S.K. Das, Tribology of electroless nickel coatings—a review. Mater. Design 32, 1760–1775 (2011)

    Article  CAS  Google Scholar 

  15. K. Chin et al., “Gold and silver coated carbon nanotubes: an improved broad-band optical limiter”. Chem. Phys. Lett. 409, 85–88 (2005)

    Article  CAS  Google Scholar 

  16. S. Elbasuney et al., “Stabilized super-thermite colloids: a new generation of advanced highly energetic materials”. Appl. Surf. Sci. 419, 328–336 (2017)

    Article  CAS  Google Scholar 

  17. J.A. Conkling, C. Mocella, Chemistry of pyrotechnics: basic principles and theory: CRC press, Boca Raton, (2010)

    Google Scholar 

  18. S. Fischer, M. Grubelich, “A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications,” In 32nd Joint Propulsion Conference and Exhibit, ed: American Institute of Aeronautics and Astronautics (1996)

  19. V.E. ZARKO, A.A. GROMOV (eds.), Energetic nanomaterials synthesis, characterization, and application (Elsevier, Amsterdam, 2016)

    Google Scholar 

  20. N.H. Yen, L.Y. Wang, “Reactive metals in explosives”. Propellants Explos. Pyrotech. 37, 143–155 (2012)

    Article  CAS  Google Scholar 

  21. D.G. Piercey, T.M. Klapoetke, Nanoscale aluminum-metal oxide (thermite) reactions for application in energetic materials. Cent. Eur. J. Energ Mater 7, 115–129 (2010)

    CAS  Google Scholar 

  22. R.J. Jacob et al., “Energy release pathways in nanothermites follow through the condensed state”. Combust. Flame 162, 258–264 (2015)

    Article  CAS  Google Scholar 

  23. G. Jian et al., “Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition?”. Combust. Flame 160, 432–437 (2013)

    Article  CAS  Google Scholar 

  24. D.J. Shin et al., “Nanothermite of Al nanoparticles and three-dimensionally ordered macroporous CuO: Mechanistic insight into oxidation during thermite reaction”. Combust. Flame 189, 87–91 (2018)

    Article  CAS  Google Scholar 

  25. M. Comet et al., “Nanothermite foams: From nanopowder to object”. Chem. Eng. J. 316, 807–812 (2017)

    Article  CAS  Google Scholar 

  26. M.B. Talawar et al., “Emerging trends in advanced high energy materials” Combust. Explos. Shock Waves. 43, 62–72 (2007)

    Article  Google Scholar 

  27. J. Conkling, C. MOCELLA (eds.), Chemistry of pyrotechnics basic principles and theory (CRC, London, 2012)

    Google Scholar 

  28. A.S. Mukasyan et al., “Combustion synthesis in nanostructured reactive systems”. Adv. Powder Technol. 26, 954–976 (2015)

    Article  CAS  Google Scholar 

  29. P. Brousseau, C.J. Anderson, Nanometric aluminum in explosives. Propellants Explos. Pyrotech. 27, 300–306 (2002)

    Article  CAS  Google Scholar 

  30. C. Rossi, “Two decades of research on nano-energetic materials”. Propellants Explos. Pyrotech. 39, 323–327 (2014)

    Article  CAS  Google Scholar 

  31. K. Monogarov et al., “Сombustion of micro- and nanothermites under elevating pressure”. Phys. Procedia 72, 362–365 (2015)

    Article  CAS  Google Scholar 

  32. B.W. Asay et al., Ignition characteristics of metastable intermolecular composites. Propellants Explos. Pyrotech. 29, 216–219 (2004)

    Article  CAS  Google Scholar 

  33. J. Wang et al., “Thermal stability and reaction properties of passivated Al/CuO nano-thermite”. J. Phys. Chem. Solids 72, 620–625 (2011)

    Article  CAS  Google Scholar 

  34. H. Wang et al., “Assembly and reactive properties of Al/CuO based nanothermite microparticles”. Combust. Flame 161, 2203–2208 (2014)

    Article  CAS  Google Scholar 

  35. A.K. Mohamed et al., “Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation”. J. Hazard. Mater. 301, 492–503 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. S. Elbasuney et al., “Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture” Fuel, 208, 296–304 (2017)

  37. C. Aumann et al., “Oxidation behavior of aluminum nanopowders”. J. Vac. Sci. Technol. B 13, 1178–1183 (1995)

    Article  CAS  Google Scholar 

  38. I. Monk et al., “Combustion characteristics of stoichiometric Al–CuO nanocomposite thermites prepared by different methods”. Combust. Sci. Technol. 189, 555–574 (2017)

    Article  CAS  Google Scholar 

  39. S. Arai et al., Nickel-coated carbon nanofibers prepared by electroless deposition. Electrochem. Commun. 6, 1029–1031 (2004)

    Article  CAS  Google Scholar 

  40. S.-M. Bak et al., “Mesoporous nickel/carbon nanotube hybrid material prepared by electroless deposition”. J. Mater. Chem. 21, 1984–1990 (2011)

    Article  CAS  Google Scholar 

  41. M. Jagannatham et al., “Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites”. Appl. Surf. Sci. 324, 475–481 (2015)

    Article  CAS  Google Scholar 

  42. L.-M. Ang et al., “Electroless plating of metals onto carbon nanotubes activated by a single-step activation method”. Chem. Mater. 11, 2115–2118 (1999)

    Article  CAS  Google Scholar 

  43. F. Wang et al., “The preparation of multi-walled carbon nanotubes with a Ni–P coating by an electroless deposition process” Carbon, 43, 1716–1721, (2005)

    Article  CAS  Google Scholar 

  44. S. Elbasuney, “Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)

    Article  CAS  Google Scholar 

  45. S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    Article  CAS  Google Scholar 

  46. P.P. Vadhe et al., “Cast aluminized explosives (review)” Combust Explos Shock Waves. 44, 461–477, (2008)

    Article  Google Scholar 

  47. S. Elbasuney, “Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems” J. Inorg. Organomet. Polym. Mater, 28, 1793–1800, (2018)

    Article  CAS  Google Scholar 

  48. M. Suceska (ed.), Test methods for explosives (Springer, New York, 1995)

    Google Scholar 

  49. PHYWE, “PHYWE brisance apparatus “, ed. Germany, 1994

  50. T. Tillotson et al., “Sol–gel processing of energetic materials”. J. Non Cryst. Sol. 225, 358–363 (1998)

    Article  CAS  Google Scholar 

  51. M.A. Elsayed et al., “Instant synthesis of bespoke nanoscopic photocatalysts with enhanced surface area and photocatalytic activity for wastewater treatment”. J. Photochem. Photobiol. A 344, 121–133 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Elbasuney.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., Zaky, M.G., Radwan, M. et al. Synthesis of CuO Nanocrystals Supported on Multiwall Carbon Nanotubes for Nanothermite Applications. J Inorg Organomet Polym 29, 1407–1416 (2019). https://doi.org/10.1007/s10904-019-01107-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01107-1

Keywords

Navigation