Skip to main content
Log in

The Nonlinear I–V Behavior of Graphene Nanoplatelets/Epoxy Resin Composites Obtained by Different Processing Methods

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

With the rapid development of information technology, the conductive switching materials induced by voltage are highly desired to protect the electronic devices from surge voltage and electrostatic discharge. Polymeric composites filled with conductive or semiconductive fillers with high nonlinear I–V characteristics can be used for the overvoltage protection. In this study, the graphene nanoplatelets (GNPs) were processed by two methods (TEC1 and TEC2) and embedded in an epoxy resin (ER) to prepare composites. In the TEC1, the graphene oxide (GO) was firstly reduced for improving conductivity and modified by coupling agent later. On the contrary, the GO was modified before reduction in the TEC2, which focused on improving the compatibility and dispersivity of fillers with the matrix. The microstructure analysis and conductive characteristic measurements of the GNPs/ER composites obtained by TEC1 and TEC2 exhibited obvious nonlinear I–V behavior under certain applied voltage range with a high nonlinear coefficient. The switching threshold voltage and nonlinear coefficients could be adjusted by changing the filling concentration of the filler. Moreover, the conductive mechanism of the nonlinear I–V behavior was discussed, which verified that the GNPs/ER composites obtained by TEC2 was more suitable for the actual need of overvoltage protection because of their stable nonlinear I–V characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Wang, S. Yu, S. Luo et al., Investigation of nonlinear I–V behavior of CNTs filled polymer composites. Mater. Sci. Eng. B 206, 55–60 (2016)

    Article  CAS  Google Scholar 

  2. Y. Gao, F. Liu, D. Liu et al., Electrical-field induced nonlinear conductive behavior in dense zirconia ceramic. J. Mater. Sci. Technol. 33, 897–900 (2017)

    Article  Google Scholar 

  3. Q. Chen, J. Gao, K. Dai et al., Nonlinear current-voltage characteristics of conductive polyethylene composites with carbon black filled pet microfibrils. Chin. J. Polym. Sci. 31(2), 211–217 (2013)

    Article  CAS  Google Scholar 

  4. N. Masó, H. Beltrán, M. Prades et al., Field-enhanced bulk conductivity and resistive-switching in Ca-doped BiFeO3 ceramics. Phys. Chem. Chemical Phys. 16(36), 19408–19416 (2014)

    Article  Google Scholar 

  5. L.U. Pin, Q.U. Zhaoming, W.A.N.G. Qingguo et al., Conductive switching behavior of epoxy resin/micron-aluminum particles composites. e-Polymers 18(1):85–89 (2018)

    Article  Google Scholar 

  6. R.M. Mutiso, J.M. Kikkawa, K.I. Winey, Resistive switching in silver/polystyrene/silver nano-gap devices. Appl. Phys. Lett. 103, 223302 (2013)

    Article  Google Scholar 

  7. K. Oh, W. Jeon, S.S. Lee, One-dimensional TiO2@Ag nanoarchitectures with interface-mediated implementation of resistance-switching behavior in polymer nanocomposites. ACS Appl. Mater. Interfaces 4, 5727–5731 (2012)

    Article  CAS  Google Scholar 

  8. Q. Liu, X. Yao, X. Zhou et al., Varistor effect in Ag–graphene/epoxy resin nanocomposites. Scripta Mater. 66(2), 113–116 (2012)

    Article  CAS  Google Scholar 

  9. B. Kiesow, J.E. Morris, C. Radehaus, A. Heilmann, Switching behavior of plasma polymer films containing silver nanoparticles. J. Appl. Phys. 94(10), 6988–6990 (2003)

    Article  CAS  Google Scholar 

  10. X. Wang, J.K. Nelson, L.S. Schadler, Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Trans. Dielectr. Electr. Insul. 17, 1687–1696 (2010)

    Article  CAS  Google Scholar 

  11. V. Panwar, V.K. Sachdev, R.M. Mehra, Insulator conductor transition in low-density polyethylene–graphite composites. Eur. Polymer J. 43, 573–585 (2007)

    Article  CAS  Google Scholar 

  12. W. Lu, D.J. Wu, C.L. Wu, G.H. Chen, Nonlinear DC response in high-density polyethylene/graphite nanosheets composites. J. Mater. Sci. 41, 1785–1790 (2006)

    Article  CAS  Google Scholar 

  13. W. Lu, H.F. Lin, G.H. Chen, Voltage-induced resistivity relaxation in a high-density polyethylene/graphite nanosheet composite. J. Polym. Sci. Part B 45, 860–863 (2007)

    Article  CAS  Google Scholar 

  14. S.I. White, R.M. Mutiso, P.M. Vora et al., Electrical percolation behavior in silver nanowire–polystyrene composites: simulation and experiment. Adv. Funct. Mater. 20(16), 2709–2716 (2010)

    Article  CAS  Google Scholar 

  15. S.I. White, P.M. Vora, J.M. Kikkawa, K.I. Winey, Resistive switching in bulk silver nanowire-polystyrene composites. Adv. Funct. Mater. 21(2), 233–240 (2011)

    Article  CAS  Google Scholar 

  16. J. Wenhu Yang, S. Wang, S. Luo, Yu, et al. ZnO-Decorated carbon nanotube hybrids as fillers leading to reversible nonlinear IV behavior of polymer composites for device protection. ACS Appl. Mater. Interfaces 8, 35545–35551 (2016)

    Article  Google Scholar 

  17. A.C. Ferrari, F. Bonaccorso, V. Fal’Ko et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015)

    Article  CAS  Google Scholar 

  18. X. Du, I. Skachko, A. Barker et al., Approaching ballistic transport in suspended grapheme. Nat. Nanotechnol. 3(8), 491–495 (2008)

    Article  CAS  Google Scholar 

  19. A.J. Marsden, D.G. Papageorgiou, C. Vallés et al., Electrical percolation in graphene–polymer composites. 2D Mater 5, 032003 (2018)

    Article  Google Scholar 

  20. D. Xiang, L. Wang, Y. Tang et al., Damage self-sensing behavior of carbon nanofiller reinforced polymer composites with different conductive network structures. Polymer 158, 308–319 (2018)

    Article  CAS  Google Scholar 

  21. D. Xiang, L. Wang, Y. Tang et al., Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures. Polym. Int. 67(2), 227–235 (2017)

    Article  Google Scholar 

  22. D. Xiang, L. Wang, Y. Tang et al., Processing-property relationships of biaxially stretched binary carbon nanofiller reinforced high density polyethylene nanocomposites. Mater. Lett. 209, 551–554 (2017)

    Article  CAS  Google Scholar 

  23. M.J. Roshan, A. Jeevika, A. Bhattacharyya et al., One-pot fabrication and characterization of graphene/PMMA composite flexible films. Mater. Res. Bull. 105, 133–141 (2018)

    Article  CAS  Google Scholar 

  24. Y. Wu, Z. Wang, X. Liu et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 9(10), 9059 (2017)

    Article  CAS  Google Scholar 

  25. Z. Jia, H. Li, Y. Zhao et al., Electrical and mechanical properties of poly (dopamine)-modified copper/reduced graphene oxide composites. J. Mater. Sci. 52(19), 11620–11629 (2017)

    Article  CAS  Google Scholar 

  26. H. Yang, P. Liu, T. Zhang et al., Fabrication of natural rubber nanocomposites with high grapheme contents via vacuum-assited self-assembly. RSC Adv. 4(53), 27687–27690 (2014)

    Article  CAS  Google Scholar 

  27. N.A.M. Jani, M.A. Ibrahim, T.I.T. Kudin et al. Morphological and electrochemical properties of hybridized PPy/rGO composites. Mater. Today Proc. 4(4):5138–5145 (2017)

    Google Scholar 

  28. N. Park, J. Lee, H. Min et al., Preparation of highly conductive reduced graphite oxide/poly (styrene-co-butyl acrylate) composites via miniemulsion polymerization. Polymer 55(20), 5088–5094 (2014)

    Article  CAS  Google Scholar 

  29. S.C. Pillai, J.M. Kelly, R. Ramesh et al., Advances in the synthesis of ZnO nanomaterials for varistor devices. J. Mater. Chem. C 1, 3268 (2013)

    Article  CAS  Google Scholar 

  30. X. Wang, J.K. Nelson, L.S. Schadler et al., Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Trans. Dielectr. Electr. Insul. 17(6), 1687–1696 (2010)

    Article  CAS  Google Scholar 

  31. Y.C. Lai, D.Y. Wang, I. Huang et al., Low operation voltage macromolecular composite memory assisted by graphene nanoflakes. J. Mater. Chem. C 1(3), 552–559 (2012)

    Article  Google Scholar 

  32. H.Y. Tsao, Y.J. Lin, Resistive switching behaviors of Au/pentacene/Si-nanowire arrays/heavily doped n-type Si devices for memory applications. Appl. Phys. Lett. 104(5), 3 (2014)

    Google Scholar 

  33. J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34(6), 1793–1803 (1963)

    Article  Google Scholar 

  34. Z. Wang, F. Zeng, J. Yang et al., Resistive switching induced by metallic filaments formation through poly (3, 4-ethylene-dioxythiophene):poly(styrenesulfonate). ACS Appl. Mater. Interfaces 4(1), 447–453 (2012)

    Article  CAS  Google Scholar 

  35. P. Sheng, Pair-cluster theory for the dielectric constant of composite media. Phys. Rev. B 22(12), 6364–6368 (1980)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Foundation of National Key Laboratory on Electromagnetic Environment Effects (No. 614220504030617).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoming Qu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Qu, Z., Wang, Q. et al. The Nonlinear I–V Behavior of Graphene Nanoplatelets/Epoxy Resin Composites Obtained by Different Processing Methods. J Inorg Organomet Polym 29, 1198–1204 (2019). https://doi.org/10.1007/s10904-019-01083-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01083-6

Keywords

Navigation