Skip to main content
Log in

Nd3+ Ion-Substituted Co1−2xNixMnxFe2−yNdyO4 Nanoparticles: Structural, Morphological, and Magnetic Investigations

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Co1−2xNixMnxFe2−yNdyO4 (0.0 ≤ x = y ≤ 0.3) nanoparticles (NPs) were synthesized by the citrate sol–gel route. All the products were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and a vibrating-sample magnetometer (VSM). The cubic structure of all the samples was confirmed by phase identification of XRD patterns, using Rietveld refinement. VSM analysis confirmed the soft ferromagnetic behavior of the synthesized products. The saturation (Ms) and remanent (Mr) magnetizations decreased with an increase in the amount of substitution elements. Compared with that of pure CoFe2O4 NPs, the coercive field (Hc) increased up to 890 Oe at x = y = 0.03. The squareness ratio was found to be in the 0.55–0.46 interval, indicating that the various synthesized NPs exhibit a single domain and uniaxial anisotropy. The effective magnetocrystalline anisotropy constant (Keff), magneton number \(({n_B})\), and anisotropy field (Ha) were also determined, and are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q.A. Pankhrust, S.K. Connolly, J. Jones Doobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, 1–67 (2003)

    Article  Google Scholar 

  2. Q. Chen, Z.J. Zhang, Size-dependent super paramagnetic properties of spinel ferrite nanocrystallites. Appl. Phys. Lett. 73, 3156 (1998)

    Article  CAS  Google Scholar 

  3. E. Ranjith Kumar, R. Jayaprakash, R. Patel, Structural and morphological studies of manganese substituted CoFe2O4 and NiFe2O4 nanoparticles. Superlattices Microstruct. 62, 277–284 (2013)

    Article  CAS  Google Scholar 

  4. E. RanjithKumar, A.S. Kamzin, K. Janani, Effect of annealing on particle size, microstructure and gas sensing properties of Mn substituted CoFe2O4 nanoparticles. ‎J. Magn. Magn. Mater. 417, 122–129 (2016)

    Article  CAS  Google Scholar 

  5. L. Zhao, H. Yang, L. Yu, Y. Cui, X. Zhao, S. Feng, Magnetic properties of resubstituted Ni–Mn ferrite nanocrystallites. J. Mater. Sci. 42, 686–691 (2007)

    Article  CAS  Google Scholar 

  6. M. Junaid, M.A. Khan, F. Iqbal, G. Murtaza, M.N. Akhtar, M. Ahmad, I. Shakir, M.F. Warsi, Structural, spectral, dielectric and magnetic properties of Tb–Dy doped Li-Ni nano-ferrites synthesized via micro-emulsion route. J. Magn. Magn. Mater. 419, 338–344 (2016)

    Article  CAS  Google Scholar 

  7. M.S. Shaha, K. Ali, I. Ali, A. Mahmood, S.M. Ramay, M.T. Farid, Structural and magnetic properties of praseodymium substituted barium based spinel ferrites. Mater. Res. Bull. 98, 77–82 (2018)

    Article  CAS  Google Scholar 

  8. G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlu, M. Feder, O.F. Caltun, Effect of rare earth substitution in cobalt ferrite bulk materials. J. Magn. Magn. Mater. 390, 123–131 (2015)

    Article  CAS  Google Scholar 

  9. B. Zhou, Y.-W. Zhang, C.-S. Liao, C.-H. Yan, L.-Y. Chen, S.-Y. Wang, Rare-earth-mediated magnetism and magneto-optical Kerr effects in nanocrystalline CoFeMn0.9RE0.1O4 thin films. J. Magn. Magn. Mater. 280, 327 (2004)

    Article  CAS  Google Scholar 

  10. N. Kasapoğlu, A. Baykal, Y. Köseoğlu, M.S. Toprak, Microwave-assisted combustion synthesis of CoFe2O4 with urea and its magnetic characterization. Scripta Mater. 57, 441–444 (2007)

    Article  CAS  Google Scholar 

  11. A. Manikandan, R. Sridhar, S. Arul Antony, S. Ramakrishna, A simple aloe vera plant-extracted microwave and conventional combustion synthesis: morphological, optical and catalytic properties of magnetic CoFe2O4 nanostructures. ‎J. Mol. Struct. 1076, 188–200 (2014)

    Article  CAS  Google Scholar 

  12. S. Xavier, S. Thankachan, B.P. Jacob, E.M. Mohammed, Effect of samarium substitution on the structural and magnetic properties of nanocrystalline cobalt ferrite, J. Nanosci. (2013). https://doi.org/10.1155/2013/524380

    Article  Google Scholar 

  13. M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol gel route. J. Magn. Magn. Mater. 460, 268–277 (2018)

    Article  CAS  Google Scholar 

  14. S.I. Ahmad, S.A. Ansari, D. Ravi Kumar, Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. ‎Mater. Chem. Phys. 208, 248–257 (2018)

    Google Scholar 

  15. S. Singhal, J. Singh, S.K. Barthwal, K. Chandra, Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1–xNixFe2O4). J. Solid State Chem. 178, 3183–3189 (2005)

    Article  CAS  Google Scholar 

  16. S. Joshi, M. Kumar, Effect of Ni2+ substitution on structural, magnetic, dielectric and optical properties of mixed spinel CoFe2O4 nanoparticles. Ceram. Int. 42, 18154–18165 (2016)

    Article  CAS  Google Scholar 

  17. Y. Tang, X. Wang, Q. Zhang, Y. Li, H. Wang, Solvothermal synthesis of Co1–xNixFe2O4 nanoparticles and its application in ammonia vapors detection. Prog. Nat. Sci.: Mater. Int. 22, 53–58 (2012)

    Article  Google Scholar 

  18. A. Kumar, P. Sharma, D. Varshney, Structural, vibrational and dielectric study of Ni doped spinel Co ferrites: Co1–xNixFe2O4 (x = 0.0, 0.5, 1). Ceram. Int. 40(0), 12855–12860 (2014)

    Article  CAS  Google Scholar 

  19. A.B. Salunkhe, V.M. Khot, M.R. Phadatare, N.D. Thorat, R.S. Joshi, H.M. Yadav, S.H. Pawar, Low temperature combustion synthesis and magnetostructural properties of Co–Mn nanoferrites. J. Magn. Magn. Mater. 352, 91–98 (2014)

    Article  CAS  Google Scholar 

  20. S.P. Yadav, S.S. Shinde, P. Bhatt, S.S. Meena, K.Y. Rajpure, Distribution of cations in Co1–xMnxFe2O4 using XRD, magnetization and Mössbauer spectroscopy. J. Alloys Compd. 646, 550–556 (2015)

    Article  CAS  Google Scholar 

  21. S.P. Yadav, S.S. Shinde, A.A. Kadam, K.Y. Rajpure, Structural, morphological, dielectrical, magnetic and impedance properties of Co1–xMnxFe2O4. J. Alloys Compd. 555, 330–334 (2013)

    Article  CAS  Google Scholar 

  22. R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016)

    Article  CAS  Google Scholar 

  23. L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, S. Feng, Magnetic properties of CoFe2O4 ferrite doped with rare earth ion. Mater. Lett. 60, 1–6 (2006)

    Article  CAS  Google Scholar 

  24. L. Ben Tahar, M. Artus, S. Ammar, L.S. Smiri, F. Herbst, M.-J. Vaulay, V. Richard, J.-M. Grenèche, F. Villain, F. Fiévet, Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE = La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. J. Magn. Magn. Mater. 320, 3242–3250 (2008)

    Article  CAS  Google Scholar 

  25. S.R. Bhongale, H.R. Ingawale, T.J. Shinde, P.N. Vasambekar, Effect of Nd3+ substitution on structural and magnetic properties of Mg–Cd ferrites synthesized by microwave sintering technique. J. Rare Earths 36, 390–397 (2018)

    Article  CAS  Google Scholar 

  26. W.R. Agami, Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Physica B 534, 17–21 (2018)

    Article  CAS  Google Scholar 

  27. M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, S.A. Khan, The role of praseodymium substituted ions on electrical and magnetic properties of Mg spinel ferrites. J. Magn. Magn. Mater. 428, 136–143 (2017)

    Article  CAS  Google Scholar 

  28. M. Tsvetkov, M. Milanova, I. Ivanova, D. Neov, Z. Cherkezova-Zheleva, J. Zaharieva, M. Abrashev, Phase composition and crystal structure determination of cobalt ferrite, modified with Ce, Nd and Dy ions by X-ray and neutron diffraction. J. Mol. Struct. (2018). https://doi.org/10.1016/j.molstruc.2018.07.083

    Article  Google Scholar 

  29. R. Kumar, M. Kar, Correlation between lattice strain and magnetic behavior in non-magnetic Ca substituted nano-crystalline cobalt ferrite. Ceram. Int. 42, 6640–6647 (2016)

    Article  CAS  Google Scholar 

  30. A. Silambarasu, A. Manikandan, K. Balakrishnan, S.K. Jaganathan, E. Manikandan, J. Sundeep Aanand, Comparative study of structural, morphological, magneto-optical and photo-catalytic properties of magnetically reusable spinel MnFe2O4 nano-catalysts. J. Nanosci. Nanotechnol. 18, 3523–3531 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. M.M.N. Ansari, S. Khan, N. Ahmad, Effect of R3+ (R = Pr, Nd, Eu and Gd) substitution on the structural, electrical, magnetic and optical properties of Mn-ferrite nanoparticles. J. Magn. Magn. Mater. 465, 81–87 (2018)

    Article  CAS  Google Scholar 

  32. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Am 240(826), 599–642 (1948)

    Article  Google Scholar 

  33. M.A. Almessiere, Y. Slimani, A. Baykal, Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method. J. Alloys Compd. 762, 389–397 (2018)

    Article  CAS  Google Scholar 

  34. Y. Slimani, H. Güngüneş, M. Nawaz, A. Manikandan, H.S. El Sayed, M.A. Almessiere, H. Sözeri, S.E. Shirsath, I. Ercan, A. Baykal, Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 44, 14242–14250 (2018)

    Article  CAS  Google Scholar 

  35. S.S. More, R.H. Kadam, A.B. Kadam, D.R. Mane, G.K. Bichile, Structural properties and magnetic interactions in Al3+ and Cr3+ co-substituted CoFe2O4 ferrite. Cent. Eur. J. Chem. 8, 419–425 (2010)

    CAS  Google Scholar 

  36. Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 321, 1251 (2009)

    Article  CAS  Google Scholar 

  37. M.M. Rashad, R.M. Mohamed, H. El-Shall, Magnetic properties of nanocrystalline Sm-substituted CoFe2O4 synthesized by citrate precursor method. J. Mater. Process. Technol. 198, 139–146 (2008)

    Article  CAS  Google Scholar 

  38. P.P. Hankare, U.B. Sankpal, R.P. Patil, I.S. Mulla, P.D. Lokhande, N.S. Gajbhiye, Synthesis and characterization of CoCrxFe2–xO4 nanoparticles. J. Alloys Compd. 485, 798–801 (2009)

    Article  CAS  Google Scholar 

  39. M. Amir, H. Gungunes, Y. Slimani, N. Tashkandi, H.S. El Sayed, F. Aldakheel, M. Sertkol, H. Sozeri, A. Manikandan, I. Ercan, A. Baykal, Mossbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4733-5

    Article  Google Scholar 

  40. J.M.D. Coey, Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971)

    Article  CAS  Google Scholar 

  41. S. Jauhar, S. Singhal, Substituted cobalt nano-ferrites, CoMxFe2–xO4 (M = Cr3+, Ni2+, Cu2+, Zn2+; 0.2 ≤ x ≤ 1.0) as heterogeneous catalysts for modified Fenton׳s reaction. Ceram. Int. 40, 11845–11855 (2014)

    Article  CAS  Google Scholar 

  42. Z.K. Heiba, M.B. Mohamed, S.I. Ahmed, Cation distribution correlated with magnetic properties of cobalt ferrite nanoparticles defective by vanadium doping. J. Magn. Magn. Mater. 441, 409–416 (2017)

    Article  CAS  Google Scholar 

  43. M.A. Almessiere, Y. Slimani, A. Baykal, Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceram. Int. 44, 9000–9008 (2018)

    Article  CAS  Google Scholar 

  44. M.A. Almessiere, Y. Slimani, H.S. El Sayed, A. Baykal, Structural and magnetic properties of Ce-Y substituted strontium nanohexaferrites. Ceram. Int. 44, 12511–12519 (2018)

    Article  CAS  Google Scholar 

  45. Y. Slimani, A. Baykal, M. Amir, N. Tashkandi, H. Güngüneş, S. Guner, H.S. El Sayed, F. Aldakheel, T.A. Saleh, A. Manikandan, Substitution effect of Cr3+ on hyperfine interactions, magnetic and optical properties of Sr-hexaferrites. Ceram. Int. 44, 15995–16004 (2018)

    Article  CAS  Google Scholar 

  46. A.D. Korkmaz, S. Güner, Y. Slimani, H. Gungunes, M. Amir, A. Manikandan, A. Baykal, Microstructural, optical and magnetic properties of vanadium substituted nickel spinel nano-ferrites. J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4793-6

    Article  Google Scholar 

  47. M.A. Almessiere, Y. Slimani, A. Baykal, Structural, morphological and magnetic properties of hard/soft SrFe12–xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: effect of vanadium substitution. J. Alloys Compd. 767, 966–975 (2018)

    Article  CAS  Google Scholar 

  48. S.E. Shirsath, B.G. Toshka, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, A. Ghasemi, Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J. Phys. Chem. Solids 71, 1669–1675 (2010)

    Article  CAS  Google Scholar 

  49. M.H. Shams, A.S. Rozatian, M.H. Yousefi, J. Valícek, V. Sepelak, Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite. J. Magn. Magn. Mater 399, 10–18 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Almessiere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almessiere, M.A., Slimani, Y., Ali, S. et al. Nd3+ Ion-Substituted Co1−2xNixMnxFe2−yNdyO4 Nanoparticles: Structural, Morphological, and Magnetic Investigations. J Inorg Organomet Polym 29, 783–791 (2019). https://doi.org/10.1007/s10904-018-1052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-1052-z

Keywords

Navigation