Skip to main content

Advertisement

Log in

Optical, Dielectric Properties and Energy Storage Efficiency of ZnO/Epoxy Nanocomposites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

ZnO/epoxy nanocomposites were prepared in five different contents (0.25–3.0 wt%). Optical, thermal and dielectric properties have been examined as a function of ZnO nanoparticles. The absorption optical spectra exhibit a broad intense peak assigned to the n–π* (HOMO–LUMO) transitions. Nanocomposite with 3.0 wt% ZnO sample completely blocks UV-light radiations in the region from 300 to 480 nm, which allowed that the prepared material to be used for UV-Shielding devices. The optical band gap is found to decrease with increasing filler ZnO concentrations. This might be due to increasing the density of defect states. Permittivity and electric modulus formalisms are used to analyze and interpret the experimental data. γ relaxation is observed in the low temperature region, which is attributed to the rearrangement of small parts of the polymeric chains. The α relaxation and the Maxwell–Wagner–Sillars (MWS) effect, attributed to the glass rubber transition of the polymeric matrix and the interfacial polarization phenomena respectively, are observed in the high temperature region. Using Havriliak–Negami approach, the temperature dependence of relaxation time for MWS and γ relaxations follows an Arrhenius behavior while the α relaxation time is well described by the Vogel–Fulcher–Tamann behavior. The activation energies of all relaxation modes were calculated and discussed. The energy density of the investigated samples is significantly enhanced. It is about 2 × 10−6 J/m3 for nanocomposite with 3.0 wt% ZnO at 20 °C. These results indicate that the effect of ZnO nanoparticles makes the proposed materials suitable candidates for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Zhang, R. Mason, G.C. Stevens, Trans. IEEE Japan 126-A, 1105 (2006)

    Article  Google Scholar 

  2. J.K. Nelson, J.C. Fothergill, L.A. Dissado, W. Peasgood, in 2002 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (2002), p. 295

  3. T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, IEEE Trans. Dielectr. Electr. Insul. 12, 669 (2005)

    Article  CAS  Google Scholar 

  4. C. Zhang, R. Mason, G.C. Stevens, in CEIDP (2006), p. 325

  5. F. Guo, S. Aryana, Y. Han, Y. Jiao, Appl. Sci. 8, 1696 (2018)

    Article  Google Scholar 

  6. S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, J. Phys. D 47, 275301 (2014)

    Article  CAS  Google Scholar 

  7. G. Murtaza, I. Ahmad, A. Hakeem, P. Mao, X. Guohua, M.T. Farid, G. Mustafa, M. Kanwal, M. Hussain, Dig. J. Nanomater. Biostruct. 10, 1393 (2015)

    Google Scholar 

  8. W.S. Kim, H.S. Song, B.O. Lee, K.H. Kwon, M.S. Lim, Macromol. Res. 10, 253 (2002)

    Article  CAS  Google Scholar 

  9. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H.-C. Zur Loye, Materials 2(4), 1697 (2009)

    Article  CAS  PubMed Central  Google Scholar 

  10. H. Lee, K. Nevill, Handbook of Epoxy Resins (McGraw-Hill, New York, 1967)

    Google Scholar 

  11. S.J. Shaw, I.B. Ellia (eds.), Chemistry and Technology of Epoxy Resins (Blackie, London, 1993), p. 125

    Google Scholar 

  12. A.W. Birley, R.J. Heath, M.J. Scott, Plastics Materials (Blackie, London, 1988), p. 171

    Book  Google Scholar 

  13. I. Hamerton, A.M. Emsley, J.N. Hay, H. Herman, B.J. Howlin, P. Jepson, J. Mater. Chem. 15, 1–12 (2005)

    Article  Google Scholar 

  14. S.M. Razavi, S.J. Ahmadi, P.R. Cherati, J. Inorg. Organomet. Polym. 24(4), 745–752 (2014)

    Article  CAS  Google Scholar 

  15. K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940–8948 (2016)

    Article  CAS  Google Scholar 

  16. K. Omri, A. Bettaibi, K. Khirouni, L.El Mir, Physica B 537, 167–175 (2018)

    Article  CAS  Google Scholar 

  17. A. Chatterjee, M.S. Islam, Mater. Sci. Eng. A 487, 574 (2008)

    Article  CAS  Google Scholar 

  18. H.M. Shanshool, M. Yahaya, W.M.M. Yunus, I.Y. Abdullah, J. Mater. Sci.: Mater. Electron. 27, 9804 (2016)

    CAS  Google Scholar 

  19. Ü Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. Rev. 98, 041301 (2005)

    Article  CAS  Google Scholar 

  20. M. Sirousazar, M. Kokabi, M. Yari, Iran. J. Pharm. Res. 4, 51–56 (2008)

    Google Scholar 

  21. K. Govatsi, A. Chrissanthopoulos, V. Dracopoulos, S.N. Yannopoulos, Nanotechnology 25, 215601 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. S. Moussa, F. Namouchi, H. Guermazi, Eur. Phys. J. Plus 130, 152 (2015)

    Article  CAS  Google Scholar 

  23. D.P. Valençaa, K.G.B. Alvesa, C.P. Melob, N. Bouchonneau, Mater. Res. 18, 273 (2015)

    Article  CAS  Google Scholar 

  24. I. Plesa, P.V. Notingher, S. Schlögl, C. Sumereder, M. Muhr, Polymers 8, 173 (2016)

    Article  CAS  PubMed Central  Google Scholar 

  25. C. Peng, G. Zhang, R. Sun, C.P. Wong, in International Conference on Electronic Packaging Technology & High-Density Packaging (2012). https://doi.org/10.1109/ICEPT-HDP.2012.6474638

  26. D.Y.S. Luo, J.P. Yang, X.J. Dai, Y. Yang, S.Y. Fu, J. Phys. Chem. C 113, 9406 (2009)

    Article  CAS  Google Scholar 

  27. J. Ederth, P. Johnsson, G. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. Granqvist, A.R. Doorn, M. Jongerius, D. Burgard, Phys. Rev. B 68, 155410 (2003)

    Article  CAS  Google Scholar 

  28. A. Bouzidi, K. Omri, L. El Mir, H. Guermazi, Mater. Sci. Semicond. Process. 39, 536 (2015)

    Article  CAS  Google Scholar 

  29. A. Bouzidi, K. Omri, W. Jilani, H. Guermazi, I.S. Yahia, J. Mater. Sci. Mater. Electron. 29(7), 5908–5917 (2018)

    Article  CAS  Google Scholar 

  30. H.M. Shanshool, M. Yahaya, W.M.M. Yunus, I.Y. Abdullah, J. Mater. Sci. Mater. Electron. 27(9), 9804–9811 (2016)

    Article  CAS  Google Scholar 

  31. G.M. Tsangaris, G.C. Psarras, A.J. Kontopoulos, J. Non-Cryst. Solids 131–133, 1164 (1991)

    Article  Google Scholar 

  32. A. Soulintzis, G. Kontos, P. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, J. Polym. Sci. B 47, 445 (2009)

    Article  CAS  Google Scholar 

  33. S. Pangrle, C.S. Wu, P.H. Geil, Polym. Compos. 10, 173 (1989)

    Article  CAS  Google Scholar 

  34. W. Howard, J.R. Starkweather, P. Avakian, J. Polym. Sci. B 30, 637 (1992)

    Article  Google Scholar 

  35. H. Smaoui, E.M. Lassad, H. Guermazi, S. Agnel, A. Toureille, J. Alloys Compd. 477, 316 (2009)

    Article  CAS  Google Scholar 

  36. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998)

    Article  CAS  Google Scholar 

  37. G.M. Tsangaris, N. Kouloumbi, S. Kyvelidis, Mater. Chem. Phys. 44(3), 245–250 (1996)

    Article  CAS  Google Scholar 

  38. H. Smaoui, M. Arous, H. Guermazi, S. Agnel, A. Toureille, J. Alloys Compd. 489, 429 (2010)

    Article  CAS  Google Scholar 

  39. W. Jilani, N. Mzabi, N. Fourati, C. Zerrouki, O. Gallot-Lavallee, R. Zerrouki, H. Guermazi, J. Mater. Sci. 51, 7874 (2016)

    Article  CAS  Google Scholar 

  40. D.J. Plazek, J.H. Magil, J. Chem. Phys. 45, 3038 (1996)

    Article  Google Scholar 

  41. E. Bureau, C. Cabot, S. Marias, J.M. Saiter, Eur. Polym. J. 41, 1152 (2005)

    Article  CAS  Google Scholar 

  42. N.G. Tomara, A.P. Kerasidou, A.C. Patsidis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, Composites A 71, 204 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wissal Jilani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jilani, W., Fourati, N., Zerrouki, C. et al. Optical, Dielectric Properties and Energy Storage Efficiency of ZnO/Epoxy Nanocomposites. J Inorg Organomet Polym 29, 456–464 (2019). https://doi.org/10.1007/s10904-018-1016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-1016-3

Keywords

Navigation