Skip to main content
Log in

Structural, Optical, Electrical and Magnetic Studies of PANI/Ferrite Nanocomposites Synthesized by PLD Technique

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present work PANI, 90%PANI/10%Ni0.8Zn0.2Fe2O4 and 90%PANI/10% Ni0.2Zn0.8Fe2O4 thin films were deposited successfully on the p-type Si-substrates by employing pulsed laser deposition technique (PLD), while the ferrite nanoparticles were synthesized by gel method. The interaction between ferrite nano powders and polyaniline has been studied by using X-ray diffraction (XRD), scanning electron microscope (SEM), UV–Vis spectrum, I–V characteristics and vibration sample micrometer (VSM). X-ray diffraction confirmed the presence of PANI and ferrite phases in the thin film nanocomposites. The average crystalline size value of 90%PANI/10%Ni0.8Zn0.2Fe2O4 and 90%PANI/10%Ni0.2Zn0.8Fe2O4 nanocomposite was estimated by utilizing Scherrer’s formula, they were found 20 nm and 25 nm, respectively. SEM images of the PANI and PANI/ferrite showed dense and inhomogeneous film morphology. The versatile optical properties of PANI/ferrite thin film nanocomposites are important for solar cell application. The obtained optical band gap for 90%PANI/10%Ni0.8Zn0.2Fe2O4 (2.45 eV) is less than pure PANI (2.8 eV) thin film. The lowering in the band gap value of 90%PANI/10%Ni0.8Zn0.2Fe2O4 nanocomposite film could be assigned to band edge bending phenomena. The light sensing behavior of the polyaniline/ferrite nanocomposites were examined at room temperature and showed higher response as compared to pure PANI film. Temperature dependence resistance characteristic was investigated in range between 25 and 100 °C under air atmosphere. The results showed that the dc resistance gradually decreases with the temperature increases and showing the semiconductor behavior of the prepared samples. The measured electrical resistance and band gap energy strongly suggest that the film with composition 90%PANI/10%Ni0.8Zn0.2Fe2O4 is a suitable candidate to be used in solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Shen, Q. Zhao, X. Li, D. Yuan, Y. Hou, S. Liu, Enhanced visible-light induced degradation of benzene on Mg-ferrite/hematite/PANI nanospheres: in situ FTIR investigation, J. Hazard. Mater. 241–242, 472–477 (2012)

    Article  PubMed  CAS  Google Scholar 

  2. M.A. Gabal, A.A. Al-Juaid, S. El-Rashed, M.A. Hussein, Y.M. Al Angari, Polyaniline/Co0.6Zn0.4Fe2O4 core-shell nano-composites. Synthesis, characterization and properties. J. Alloy. Compd. 747, 83–90 (2018)

    Article  CAS  Google Scholar 

  3. N.N. Ali, Y. Atassi, A. Salloum, A. Charba, A. Malki, M. Jafarian, Comparative study of microwave absorption characteristics of (polyaniline/NiZn ferrite) nanocomposites with different ferrite percentages. Mater. Chem. Phys. 211, 79–87 (2018)

    Article  CAS  Google Scholar 

  4. Y. Zuo, Z. Yao, H. Lin, J. Zhou, P. Liu, W. Chen, C. Shen, Coralliform Li0.35Zn0.3Fe2.35O4/polyaniline nanocomposites: facile synthesis and enhanced microwave absorption properties. J. Alloy. Compd. 746, 496–502 (2018)

    Article  CAS  Google Scholar 

  5. N.N. Ali, R. Al-Qassar, B. Al-Marjeh, Y. Atassi, A. Salloum, A. Malki, M. Jafarian, Design of lightweight broadband microwave absorbers in the X-band based on (polyaniline/MnNiZn ferrite) nanocomposites. J. Magn. Magn. Mater. 453, 53–61 (2018)

    Article  CAS  Google Scholar 

  6. K. Mohanraju, V. Sreejith, R. Ananth, L. Cindrella, Enhanced electrocatalytic activity of PANI and CoFe2O4/PANI composite supported on graphene for fuel cell applications. J. Power Sour. 284, 383–391 (2015)

    Article  CAS  Google Scholar 

  7. I.Z. Mohamad Ahad, S. Wadi Harun, S.N. Gan, S.W. Phang, Polyaniline (PAni) optical sensor in chloroform detection. Sens. Actuators B 261, 97–105 (2018)

    Article  CAS  Google Scholar 

  8. H. Wang, J. Lin, Z.X. Shen, Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci.: Adv. Mater. Devices 1, 225–255 (2016)

    Google Scholar 

  9. X. Zhang, X. Meng, Q. Wang, B. Qin, L.e. Jin, Q. Cao, Preparation and electrochemical investigation of polyaniline nanowires for high performance supercapacitor. Mater. Lett. 217, 312–315 (2018)

    Article  CAS  Google Scholar 

  10. I. Sowa, R. Kocjan, M. Wójciak-Kosior, R. Świeboda, D. Zajdel, M. Hajnos, Physicochemical properties of silica gel coated with a thin layer of polyaniline (PANI) and its application in non-suppressed ion chromatography. Talanta 115, 451–456 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. N.A. Oladoja, E.T. Anthony, I.A. Ololade, T.D. Saliu, G.A. Bello, Self-propagation combustion method for the synthesis of solar active Nano Ferrite for Cr(VI) reduction in aqua system. J. Photochem. Photobiol. A 353, 229–239 (2018)

    Article  CAS  Google Scholar 

  12. M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol gel route. J. Magn. Magn. Mater. 460, 268–277 (2018)

    Article  CAS  Google Scholar 

  13. S. Liu, L. Wang, K. Chou, Synthesis of metal-doped Mn-Zn ferrite from the leaching solutions of vanadium slag using hydrothermal method. J. Magn. Magn. Mater. 449, 49–54 (2018)

    Article  CAS  Google Scholar 

  14. T. Vigneswari, P. Raji, Structural and magnetic properties of calcium doped nickel ferrite nanoparticles by co-precipitation method. J. Mol. Struct. 1127, 515–521 (2017)

    Article  CAS  Google Scholar 

  15. K.K. Bhatt, Y.S. Niwate, S.S. Garje, D.C. Kothari, Room temperature magnetism in zinc nano ferrite synthesized by a novel oxalate-ceramic method. Mater. Chem. Phys. 161, 256–259 (2015)

    Article  CAS  Google Scholar 

  16. Z. Xiao, X. Sun, H. Zhang, C. Wang, L. Liu, Z. Yang, T. Zhang, L.B. Kong, Low temperature sintered magneto-dielectric ferrite ceramics with near net-shape derived from high-energy milled powders. J. Alloy. Compd. 751, 28–33 (2018)

    Article  CAS  Google Scholar 

  17. A.A. Ati, Fast synthesis, structural, morphology with enhanced magnetic properties of cobalt doped nickel ferrite nanoscale. J. Mater. Sci.: Mater. Electron. 29, 12010–12021 (2018)

    CAS  Google Scholar 

  18. M. Hashim, S.E. Shirsath, S.S. Meena, M.L. Mane, S. Kumar, P. Bhatt, R. Kumar, N.K. Prasad, S.K. Alla, J. Shah, R.K. Kotnala, K.A. Mohammed, E. Şentürk, Alimuddin, Manganese ferrite prepared using reverse micelle process: structural and magnetic properties characterization. J. Alloy. Compd. 642, 70–77 (2015)

    Article  CAS  Google Scholar 

  19. H. Sozeri, U. Kurtan, R. Topkaya, A. Baykal, M.S. Toprak, Polyaniline (PANI)–Co0.5Mn0.5Fe2O4 nanocomposite: synthesis, characterization and magnetic properties evaluation. Ceram. Int. 39, 5137–5143 (2013)

    Article  CAS  Google Scholar 

  20. J. Jiang, L. Li, F. Xu, Polyaniline–LiNi ferrite core–shell composite: preparation, characterization and properties. Mater. Sci. Eng.: A 456, 300–304 (2007)

    Article  CAS  Google Scholar 

  21. M. Khairy, M.E. Gouda, Electrical and optical properties of nickel ferrite/polyaniline nanocomposite. J. Adv. Res. 6, 555–562 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. R. Qindeel, N.H. Alonizan, Structural, dielectric and magnetic properties of cobalt based spinel ferrites. Curr. Appl. Phys. 18, 519–525 (2018)

    Article  Google Scholar 

  23. M. Su, C. Liao, P.-H. Lee, H. Li, K. Shih, Formation and leaching behavior of ferrite spinel for cadmium stabilization. Chem. Eng. Sci. 158, 287–293 (2017)

    Article  CAS  Google Scholar 

  24. A.A. Ati, Z. Othaman, A. Samavati, Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles. J. Mol. Struct. 1052, 177–182 (2013)

    Article  CAS  Google Scholar 

  25. B. Ji, C. Tian, Q. Zhang, D. Ji, J. Yang, J. Xie, J. Si, Magnetic properties of samarium and gadolinium co-doping Mn–Zn ferrites obtained by sol-gel auto-combustion method. J. Rare Earths 34, 1017–1023 (2016)

    Article  CAS  Google Scholar 

  26. M. Kurian, D.S. Nair, Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol–gel auto combustion and co-precipitation methods. J. Saudi Chem. Soc. 20, S517–S522 (2016)

    Article  CAS  Google Scholar 

  27. A. Mehto, V. Mehto, J. Chauhan, I. Singh, R. Pandey, Preparation and characterization of polyaniline/ZnO composite sensor. J. Nanomed. Res. 5, 00104 (2017)

    Google Scholar 

  28. J. Stejskal, I. Sapurina, Polyaniline: thin films and colloidal dispersions (IUPAC Technical Report) (2005)

  29. S. Zare, A.A. Ati, S. Dabagh, R.M. Rosnan, Z. Othaman, Synthesis, structural and magnetic behavior studies of Zn–Al substituted cobalt ferrite nanoparticles. J. Mol. Struct. 1089, 25–31 (2015)

    Article  CAS  Google Scholar 

  30. Z.-N. Ng, K.-Y. Chan, C.-Y. Low, S.A. Kamaruddin, M.Z. Sahdan, Al and Ga doped ZnO films prepared by a sol–gel spin coating technique. Ceram. Int. 41, S254–S258 (2015)

    Article  CAS  Google Scholar 

  31. S.B. Kondawar, A.I. Nandapure, B.I. Nandapure, Nanocrystalline nickel ferrite reinforced conducting polyaniline nanocomposites. Adv. Mater. Lett. 5, 339–344 (2014)

    Article  CAS  Google Scholar 

  32. T.K. Mahto, A.R. Chowdhuri, S.K. Sahu, Polyaniline-functionalized magnetic nanoparticles for the removal of toxic dye from wastewater, J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40840

    Article  Google Scholar 

  33. D. Akcan, A. Gungor, L. Arda, Structural and optical properties of Na-doped ZnO films. J. Mol. Struct. 1161, 299–305 (2018)

    Article  CAS  Google Scholar 

  34. J.-Q. Wen, J.-M. Zhang, Z.-G. Qiu, X. Yang, Z.-Q. Li, The investigation of Ce doped ZnO crystal: the electronic, optical and magnetic properties. Physica B 534, 44–50 (2018)

    Article  CAS  Google Scholar 

  35. A. Karimi, M.A.A. Sadatlu, B. Saberi, H. Shariatmadar, M. Ashjaee, Experimental investigation on thermal conductivity of water based nickel ferrite nanofluids. Adv. Powder Technol. 26, 1529–1536 (2015)

    Article  CAS  Google Scholar 

  36. M.N. Ashiq, F. Naz, M.A. Malana, R.S. Gohar, Z. Ahmad, Role of Co–Cr substitution on the structural, electrical and magnetic properties of nickel nano-ferrites synthesized by the chemical co-precipitation method. Mater. Res. Bull. 47, 683–686 (2012)

    Article  CAS  Google Scholar 

  37. M.J. Iqbal, M.N. Ashiq, P.H. Gomez, Effect of doping of Zr–Zn binary mixtures on structural, electrical and magnetic properties of Sr-hexaferrite nanoparticles. J. Alloy. Compd. 478, 736–740 (2009)

    Article  CAS  Google Scholar 

  38. S. Sultana, M. Rafiuddin, Z. Khan, K. Umar, Synthesis and characterization of copper ferrite nanoparticles doped polyaniline. J. Alloy. Compd. 535, 44–49 (2012)

    Article  CAS  Google Scholar 

  39. Y. Li, Y. Huang, S. Qi, L. Niu, Y. Zhang, Y. Wu, Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite. Appl. Surf. Sci. 258, 3659–3666 (2012)

    Article  CAS  Google Scholar 

  40. M. Wang, G. Ji, B. Zhang, D. Tang, Y. Yang, Y. Du, Controlled synthesis and microwave absorption properties of Ni0.6Zn0.4Fe2O4/PANI composite via an in-situ polymerization process. J. Magn. Magn. Mater. 377, 52–58 (2015)

    Article  CAS  Google Scholar 

  41. M. Ajmal, M.U. Islam, Structural, optical and dielectric properties of polyaniline-NI0.5ZN0.5Fe2O4 nano-composites. Physica B 521, 355–360 (2017)

    Article  CAS  Google Scholar 

  42. E.E. Tanrıverdi, A.T. Uzumcu, H. Kavas, A. Demir, A. Baykal, Conductivity study of polyaniline-cobalt ferrite (PANI–CoFe2O4) nanocomposite. Nano-Micro Lett. 3, 99–107 (2011)

    Article  Google Scholar 

  43. S. Bajt, S.R. Sutton, J.S. Delaney, X-ray microprobe analysis of iron oxidation states in silicates and oxides using X-ray absorption near edge structure (XANES). Geochim. Cosmochim. Acta 58, 5209–5214 (1994)

    Article  CAS  Google Scholar 

  44. A. Molak, D.K. Mahato, A.Z. Szeremeta, Synthesis and characterization of electrical features of bismuth manganite and bismuth ferrite: effects of doping in cationic and anionic sublattice: materials for applications. Prog. Cryst. Growth Charact. Mater. 64, 1–22 (2018)

    Article  CAS  Google Scholar 

  45. G. Prasanna, R. Ashok, V. Prasad, H. Jayanna, Synthesis and characterization of magnetic and conductive nickel ferrite–polyaniline nanocomposites. J. Compos. Mater. 49, 2649–2657 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Nanotechnology and Advanced Materials Center of University of Technology (UOT) and Universiti Teknologi PETRONAS/Department of Applied Science for analyze vibration sample magnetometer (VSM) data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alyaa H. Abdalsalam or Ali A. Ati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalsalam, A.H., Ati, A.A., Abduljabbar, A. et al. Structural, Optical, Electrical and Magnetic Studies of PANI/Ferrite Nanocomposites Synthesized by PLD Technique. J Inorg Organomet Polym 29, 1084–1093 (2019). https://doi.org/10.1007/s10904-018-0997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0997-2

Keywords

Navigation