Skip to main content

Advertisement

Log in

Sonochemical Syntheses of a Hetero Metal–Organic Complex, a Precursor for Producing Clean Energy Source of Hydrogen

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the present study, a hetero nuclear complex formulated as [Cu(H2O)5Ni(dipic)2]·2H2O (1) that dipic is pyridine-2,6-dicarboxylic acid, was synthesized by a sonochemical process and characterized by several techniques such as elemental analysis, atomic absorption spectroscopy, conductivity measurement, Fourier transform infrared spectroscopy, ultra violet–visible spectroscopy, thermal decomposition and single crystal X-ray diffraction. Complex 1 was dispersed on the rutile (R-TiO2) as support and after thermal decomposition, catalyst of Cu–Ni/(R-TiO2) (2) was prepared. Nano-catalyst of 2 was studied by scanning electron microscopy, Brunauer–Emmett–Teller, transmission electron microscopy and powder X-ray diffraction. Catalyst 2 was applied as a catalyst in the water–gas shift reaction in the temperature range of 150–350 °C. In addition, catalyst of 2 was synthesized by co-precipitation and impregnation methods as references catalyst. The results showed that the catalyst of 2, synthesized by thermal decomposition of complex 1, has the highest catalytic performance compared to reference catalysts. Moreover, the results confirmed that the temperature of 250 °C is the optimal temperature for all catalysts. In another section of this study, the performance of anatase and rutile supported Cu–Ni/(R-TiO2) and Cu–Ni/(A-TiO2) catalysts prepared through calcination of 1 were compared for the amount of hydrogen produced. Stability test performed on catalyst of 2 at optimum temperature (250 °C) showed that all catalysts are stable for 12 h.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Liu, J.A. Rodriguez, Y. Takahashi, K. Nakamura, J. Catal. 262, 294 (2009)

    Article  CAS  Google Scholar 

  2. Y. Li, Q. Fu, M. Flytzani-Stephanopoulos, Appl. Catal. B: Environ. 27, 179 (2000)

    Article  Google Scholar 

  3. S. Saheli, A.R. Rezvani, A. Malekzadeh, J. Mol. Struct. 1144, 166–172 (2017)

    Article  CAS  Google Scholar 

  4. W. Dimmling, Starch-Stärke 30, 401 (1978)

    Article  CAS  Google Scholar 

  5. C. Ratnasamy, J.P. Wagner, Catal. Rev. 51, 325 (2009)

    Article  CAS  Google Scholar 

  6. W. Dimmling, G. Nesemann, H. Dellweg, Crit. Rev. Biotechnol. 2, 233 (1984)

    Article  Google Scholar 

  7. M.D.S. Santos, A. Albornoz, M. do Carmo Rangel. Stud. Surf. Sci. Catal. 162, 753 (2006)

    Article  CAS  Google Scholar 

  8. K.O. Hinrichsen, K. Kochloefl, M. Muhler, Handbook of Heterogeneous Catalysis, (Wiley, New York, 2008)

    Google Scholar 

  9. S.F. Yin, B.Q. Xu, X.P. Zhou, C.T. Au, Appl. Catal. A: Gen. 277(1–2), 1 (2004)

    Article  CAS  Google Scholar 

  10. O.N. Temkin, Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms, (Wiley, New York, 2012)

    Book  Google Scholar 

  11. J.R. Ross, Catal. Today 100, 151 (2005)

    Article  CAS  Google Scholar 

  12. H. Zhao, Y. Hu, J. Li, J. Mol. Catal. A: Chem. 149, 141 (1999)

    Article  CAS  Google Scholar 

  13. A. Moser, K. Takano, D.T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, E.E. Fullerton, J. Phys. D: Appl. Phys. 35, 157 (2002)

    Article  Google Scholar 

  14. H. Schulz, Appl. Catal. A: Gen. 186, 3 (1999)

    Article  CAS  Google Scholar 

  15. C.A. Chanenchuk, I.C. Yates, C.N. Satterfield, Energy Fuel 5, 847 (1991)

    Article  CAS  Google Scholar 

  16. C. Pirola, C. Bianchi, A. Di Michele, S. Vitali, V. Ragaini, Catal. Commun. 10, 823 (2009)

    Article  CAS  Google Scholar 

  17. A.L.C. Pereira, G.J.P. Berrocal, S.G. Marchetti, A. Albornoz, A.O. de Souza, M. do Carmo Rangel, J. Mol. Catal. A: Chem. 281, 66 (2008)

    Article  CAS  Google Scholar 

  18. E. Matijević, P. Scheiner, J. Colloid. Interface Sci. 63, 509 (1978)

    Article  Google Scholar 

  19. C.R. Lund, J. Dumesic, J. Catal. 76, 93 (1982)

    Article  CAS  Google Scholar 

  20. G. Doppler, A. Trautwein, H. Ziethen, E. Ambach, R. Lehnert, M. Sprague, U. Gonser, Appl. Catal. 40, 119 (1988)

    Article  CAS  Google Scholar 

  21. R. Insoo, J. Resasco, P. Christopher, ACS. Catal. 8(8), 7368 (2018)

    Article  CAS  Google Scholar 

  22. M. Zhou, T.N.M. Le, L.K. Huynh, B. Liu, Catal. Today 280, 210 (2017)

    Article  CAS  Google Scholar 

  23. A. Ruiz Puigdollers, P. Schlexer, S. Tosoni, G. Pacchioni, ACS. Catal. 7(10), 6493 (2017)

    Article  CAS  Google Scholar 

  24. B.M. Reddy, G.M. Kumar, I. Ganesh, A. Khan, J. Mol. Catal. A: Chem. 247(1–2), 80 (2006)

    Article  CAS  Google Scholar 

  25. Y. Yang, H.W. Xiang, L. Tian, H. Wang, C.H. Zhang, Z.C. Tao, Y.W. Li, Appl. Catal. A: Gen. 284(1–2), 105 (2005)

    Article  CAS  Google Scholar 

  26. M. Salavati-Niasari, F. Davar, M. Mazaheri, Polyhedron 27(17), 3467 (2008)

    Article  CAS  Google Scholar 

  27. M. Salavati-Niasari, F. Davar, N. Mir, Polyhedron 27(17), 3514‏ (2008)

    Article  CAS  Google Scholar 

  28. M. Salavati-Niasari, F. Mohandes, F. Davar, M. Mazaheri, M. Monemzadeh, M.N. Yavarinia, Inorg. Chimica Act 362(10), 3691 (2009)

    Article  CAS  Google Scholar 

  29. J. Farzanfar, A.R. Rezvani, C. R. Chim. 18(2), 178 (2015)

    Article  CAS  Google Scholar 

  30. N.O. Kenaga, H. Taniguchi, A. Watanabe, T. Suzuki, Fuel 79(3–4), 273 (2000)

    Article  Google Scholar 

  31. C.H. Bartholomew, (AIChE’03) (2003)

  32. A. Eshraghi, A.A. Mirzaei, H. Atashi, J. Nat. Gas. Sci. Eng 26, 940 (2015)

    Article  CAS  Google Scholar 

  33. M.V. Kirillova, A.M. da Silva MFCG, Kirillov, da Silva J.J.F., A.J. Pombeiro, Inorg. Chim. Acta 360, 506 (2007)

    Article  CAS  Google Scholar 

  34. L.G. Sillen, E.A. Martell, J. Bjerrum, Stability Constants of Metal-Ion Complexes (Chemical Society, London, 1964)

    Google Scholar 

  35. C.F. Baes, R.E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976), p. 489

    Google Scholar 

  36. G. Marr, B.W. Rockett, Practical Inorganic Chemistry (VNR, London, 1972)

    Google Scholar 

  37. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1997)

    Google Scholar 

  38. G. Varasanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (Wiley, New York, 1974)

    Google Scholar 

  39. K. Akhbari, A. Morsali, J. Iran. Chem. Soc. 5, 48 (2008)

    Article  CAS  Google Scholar 

  40. N. Schumacher, A. Boisen, S. Dahl, A.A. Gokhale, S. Kandoi, L.C. Grabow, I. Chorkendorff, J. Catal. 229(2), 265 (2005)

    Article  CAS  Google Scholar 

  41. A. Andreev, V. Idakiev, D. Mihajlova, D. Shopov, Appl. Catal. 22(2), 385 (1986)

    Article  CAS  Google Scholar 

  42. Y. Li, Q. Fu, M. Flytzani-Stephanopoulos, Appl. Catal. B: Environ. 27(3), 179 (2000)

    Article  Google Scholar 

  43. W.H. Chen, M.R. Lin, T.L. Jiang, M.H. Chen, Int. J. Hydrogen Energy 33(22), 6644 (2008)

    Article  CAS  Google Scholar 

  44. T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Appl. Catal. A: Gen. 244(2), 383 (2003)

    Article  CAS  Google Scholar 

  45. A.R.S. Rad, M.B. Khoshgouei, S. Rezvani, A.R. Rezvani, Fuel Process. Technol. 96, 9 (2012)

    Article  CAS  Google Scholar 

  46. J. Farzanfar, A.R. Rezvan, Res. Chem. Int. 41(11), 8975 (2015)

    Article  CAS  Google Scholar 

  47. S. Saheli, A.R. Rezvani, A. Malekzadeh, M. Dusek, V. Eigner, Int. J. Hydrogen Energy, (2017). https://doi.org/10.1016/j.ijhydene.2017.11.019

    Article  Google Scholar 

  48. A.R.S. Rad, A.R. Rezvani, J. Mol. Catal. A: Chem. 344, 11 (2011)

    Article  CAS  Google Scholar 

  49. Z. Razmara, A.R. Rezvani, H. Saravani, Chem. Pap. 71, 849 (2017)

    Article  CAS  Google Scholar 

  50. Z. Razmara, A.R. Rezvani, H. Saravani, J. Mol. Struct. 1171, 503 (2018)

    Article  CAS  Google Scholar 

  51. Z. Rui, S. Wu, C. Peng, H. Ji, Chem. Eng. J. 243, 254 (2014)

    Article  CAS  Google Scholar 

  52. T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Appl. Catal. A: Gen. 244, 383 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I’m grateful to the University of Zabol for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Razmara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmara, Z. Sonochemical Syntheses of a Hetero Metal–Organic Complex, a Precursor for Producing Clean Energy Source of Hydrogen. J Inorg Organomet Polym 29, 165–177 (2019). https://doi.org/10.1007/s10904-018-0976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0976-7

Keywords

Navigation