Skip to main content
Log in

The Effect of RF Power on the Properties of Gallium and Aluminium Co-doped Zinc Oxide (GAZO) Thin Films

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and spectrophotometry were used to study the effect of RF power on the properties of gallium and aluminium co-doped zinc oxide (GAZO) thin films for optoelectronic device fabrication. Two peaks appeared in the XPS spectra of the Zn 2p core-level at 1045 and 1022 eV, and these were assigned to \({\text{Zn}}~2{{\text{p}}_{1/2}}\) and \({\text{Zn}}~2{{\text{p}}_{3/2}}\), respectively. The O 1s core-level revealed peaks at 530 and 531 eV which indicated the presence of two different forms of oxygen. Raman spectroscopy confirmed the films’ hexagonal wurtzite crystal structure and revealed the presence of few defects and negligible residual tensile stress. Spectral dependence of the refractive index was analyzed on the basis of the Cauchy’s dispersion model and the Wemple and DiDomenico (WDD) single oscillator model. Low refractive indices (1.6–2.0) and nearly zero extinction coefficients were obtained in the visible region (400–700 nm), indicating the high transparency nature of the GAZO thin films. The optical band gap decreased with increasing RF power, in accordance with the Burstein–Moss effect. Low Urbach energy values were obtained at low RF power, indicating less structural disorder. The free carrier concentration to effective mass ratio \(({N_c}{\text{/}}{m^*})\), plasma frequency \(({\omega _P})\) and zero frequency dielectric constant \(({\varepsilon _\infty })\) were determined. Films deposited at 150 W exhibited the optimum optical properties, desirable for optoelectronic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.P. Singh, Synthesis and growth of ZnO nanowires. Sci. Adv. Mater. 2, 245–272 (2010)

    Article  CAS  Google Scholar 

  2. I. Udom, M.K. Ram, E.K. Stefanakos, A.F. Hepp, One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater. Sci. Semicond. Process. 16, 2070–2083 (2013)

    Article  CAS  Google Scholar 

  3. C. Chevalier-César, M. Capochichi-Gnambodoe, F. Lin, D. Yu, Y. Leprince-Wang, Effect of growth time and annealing on the structural defect concentration of hydrothermally grown ZnO nanowires. AIMS Mater. Sci. 3, 562–572 (2016)

    Article  CAS  Google Scholar 

  4. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 3, e00285 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S.K. Das, F. Güell, C. Gray, P.K. Das, R. Grunwald, E. McGlynn, ZnO nanorods for efficient third harmonic UV generation: erratum. Opt. Mater. Express 4, 1243–1243 (2014)

    Article  CAS  Google Scholar 

  6. H.J. Zhou, S.S. Wong, A facile and mild synthesis of 1-D ZnO, CuO, and α-Fe2O3 nanostructures and nanostructured arrays. ACS Nano 2, 944–958 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. H. Morkoç, Ü Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-WCH, Weinheim, 2009), pp. 246–247

    Book  Google Scholar 

  8. C.M. Muiva, T.S. Sathiaraj, K. Maabong, Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram. Int. 37, 555–560 (2011)

    Article  CAS  Google Scholar 

  9. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceram. Int. 42, 10066–10070 (2016)

    Article  CAS  Google Scholar 

  10. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Physical properties of gallium and aluminium co-doped zinc oxide thin films deposited at different radio frequency magnetron sputtering power. Ceram. Int. 42, 17706–17710 (2016)

    Article  CAS  Google Scholar 

  11. E. Reza, G.M. Reza, A. Hossein, Sol-gel derived Al and Ga co-doped ZnO thin films: an optoelectronic study. Appl. Surf. Sci. 290, 252–259 (2014)

    Article  CAS  Google Scholar 

  12. J. Liu, W. Zhang, D. Song, Q. Ma, L. Zhang, H. Zhang, L. Zhang, R. Wu, Investigation of aluminium-gallium co-doped zinc oxide targets for sputtering thin film and photovoltaic application. J. Alloys Compd. 575, 174–182 (2013)

    Article  CAS  Google Scholar 

  13. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Low temperature synthesis of radio frequency magnetron sputtered gallium and aluminium co-doped zinc oxide thin films for transparent electrode fabrication. Appl. Surf. Sci. 390, 570–577 (2016)

    Article  CAS  Google Scholar 

  14. W. Lee, S. Shin, D.-R. Jung, J. Kim, C. Nahm, T. Moon, B. Park, Investigation of the electronic and optical properties in Al–Ga codoped ZnO thin films. Curr. Appl. Phys. 12, 628–631 (2012)

    Article  Google Scholar 

  15. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Effect of O2/Ar flow ratio on Ga and Al co-doped ZnO thin films by RF sputtering for optoelectronic device fabrication. Mater. Res. Bull. 95, 123–128 (2017)

    Article  CAS  Google Scholar 

  16. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. A-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39, 2283–2292 (2013)

    Article  CAS  Google Scholar 

  17. Z.-W. Wu, S.-L. Tyan, H.-H. Chen, J.-C.-A. Huang, Y.-C. Huang, C.-R. Lee, T.-S. Mao, Temperature-dependent photoluminescence and XPS study of ZnO nanowires grown on flexible Zn foil via thermal oxidation. Superlatt. Microstuct. 107, 38–43 (2017)

    Article  CAS  Google Scholar 

  18. F. Decremps, J. Pellicer-Porres, A. Marco Saitta, J.C. Chervin, A. Polian, High-pressure Raman spectroscopy study of wurtzite ZnO. Phys. Rev. B 65, 092101–092105 (2002)

    Article  CAS  Google Scholar 

  19. K.A. Alim, V.A. Fonoberov, A.A. Balandin, Origin of the phonon frequency shifts in ZnO quantum dots. Appl. Phys. Lett. 86, 053103 (2005)

    Article  CAS  Google Scholar 

  20. L. Wang, Y. Pu, Y.F. Chen, C.L. Mo, W.Q. Fang, C.B. Xiong, J.N. Dai, F.Y. Jiang, MOCVD growth of ZnO films on Si(111) substrate using a thin AIN buffer layer. J. Cryst. Growth 284, 459–463 (2005)

    Article  CAS  Google Scholar 

  21. A. Ismail, M.J. Abdullah, The structural and optical properties of ZnO thin films prepared at different RF sputtering power. J. King Saud Univ. Sci. 25, 209–215 (2013)

    Article  Google Scholar 

  22. R.G. Waykar, A.S. Pawbake, R.R. Kulkarni, A.A. Jadhavar, A.M. Funde, V.S. Waman, H.M. Pathan, S.R. Jadkar, Influence of RF power on structural, morphology, electrical, composition and optical properties of Al-doped ZnO films deposited by RF magnetron sputtering. J. Mater. Sci. Mater. Electron. 27, 1134–1143 (2016)

    Article  CAS  Google Scholar 

  23. M. Caglar, S. Ilican, Y. Caglar, Influence of dopant concentration on the optical properties of ZnO: in films by sol-gel method. Thin Solid Films 517, 5023–5028 (2009)

    Article  CAS  Google Scholar 

  24. G.C. Xie, L. Fang, L.P. Peng, G.B. Liu, H.B. Ruan, F. Wu, C.Y. Kong, Effect of In-doping on the optical constants of ZnO thin films. Phys. Procedia 32, 651–657 (2012)

    Article  CAS  Google Scholar 

  25. M.H. Mamat, M.F. Malek, N.N. Hafizah, M.N. Asiah, A.B. Suriani, A. Mohamed, N. Nafarizal, M.K. Ahmad, M. Rusop, Effect of oxygen flow rate on the ultraviolet sensing properties of zinc oxide nanocolumn arrays grown by radio frequency magnetron sputtering. Ceram. Int. 42, 4107–4119 (2016)

    Article  CAS  Google Scholar 

  26. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, Effects of post-thermal annealing on the optical constants of ZnO thin film. J. Alloys Compd. 448, 21–26 (2008)

    Article  CAS  Google Scholar 

  27. D.-Y. Zhang, P.-P. Wang, R.-I. Murakami, X.-P. Song, First-principles simulation and experimental evidence for improvement of transmittance in ZnO films. Prog. Nat. Sci. Mater. 21, 40–45 (2011)

    Article  Google Scholar 

  28. A. Bedia, F.Z. Bedia, M. Aillerie, N. Maloufi, B. Benyoucef, Influence of the thickness on optical properties of sprayed ZnO hole-blocking layers dedicated to inverted organic solar cells. Energy Procedia 50, 603–609 (2014)

    Article  CAS  Google Scholar 

  29. N. Hamzaoui, A. Boukhachem, M. Ghamnia, C. Fauquet, Investigation of some physical properties of ZnO nanofilms synthesized by micro-droplet technique. Results Phys. 7, 1950–1958 (2017)

    Article  Google Scholar 

  30. T.S. Sathiaraj, Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level. Microelectron. J. 39, 1444–1451 (2008)

    Article  CAS  Google Scholar 

  31. S.K. Ahmmad, M.A. Samee, A. Edukondalu, S. Rahman, Physical and optical properties of zinc arsenic tellurite glasses. Results Phys. 2, 175–181 (2012)

    Article  CAS  Google Scholar 

  32. R.A. Smith, Semiconductors (Academic Publishers, Calcutta, 1989), pp. 461–463

    Google Scholar 

  33. P.O. Edward, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)

    Google Scholar 

  34. D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Electrical properties of bulk ZnO. Solid State Commun. 105, 399–401 (1998)

    Article  CAS  Google Scholar 

  35. A.-S. Gadallah, M.M. El-Nahass, Structural, optical constants and photoluminescence of ZnO thin films grown by sol-gel spin coating, Adv. Condens. Matter Phys. 2013, 234546 (2013)

    Article  CAS  Google Scholar 

  36. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971)

    Article  Google Scholar 

  37. S.H. Wemple, M. DiDomenico, Theory of the elasto-optic effect in non-metallic crystals. Phys. Rev. B 1, 193–202 (1970)

    Article  CAS  Google Scholar 

  38. D. Komaraiah, E. Radha, Y. Vijayakumar, J. Sivakumar, M.V.R. Reddy, R. Sayanna, Optical, structural and morphological properties of photocatalytic ZnO thin films deposited by spray pyrolysis technique. Mod. Res. Catal. 5, 130–146 (2016)

    Article  CAS  Google Scholar 

  39. R.H.A. Orainy, Single oscillator model and refractive index dispersion properties of ternary ZnO films by sol gel method. J. Sol-Gel. Sci. Technol. 70, 47–52 (2014)

    Article  CAS  Google Scholar 

  40. F. Yakuphanoglu, S. Ilican, M. Caglar, Y. Caglar, The determination of the optical band gap and optical constants of non-crystalline and crystalline ZnO thin films deposited by spray pyrolysis. J. Optoelectron. Adv. Mater. 9, 2180–2185 (2007)

    CAS  Google Scholar 

  41. G. Malik, J. Jaiswal, S. Mourya, R. Chandra, Optical and other physical properties of hydrophobic ZnO thin films prepared by dc magnetron sputtering at room temperature. J. Appl. Phys. 122, 143105 (2017)

    Article  CAS  Google Scholar 

  42. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed using Botswana International University of Science and Technology’s research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Muchuweni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muchuweni, E., Sathiaraj, T.S., Masanganise, J. et al. The Effect of RF Power on the Properties of Gallium and Aluminium Co-doped Zinc Oxide (GAZO) Thin Films. J Inorg Organomet Polym 29, 49–58 (2019). https://doi.org/10.1007/s10904-018-0963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0963-z

Keywords

Navigation