Skip to main content
Log in

Polymeric Copper Oxide: Preparation and Investigation of Its Structure and Optical Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A complex of polyvinyl alcohol (PVA) with copper hydroxide was used as a precursor to obtain polymeric copper oxide through thermal decomposition. The absence of Cu(OH)2 crystalline phase was observed for the component ratio up to 1 Cu(OH)2 molecular unit to 3 PVA residuals. The formation of crystalline copper oxide was not observed after the dehydration of this material. UV–VIS and IR spectroscopy, and computational modeling were used to study the structure and properties of the obtained materials. A comparison with other similar materials was drawn. It was found that experimental data are in general accordance with the computations based on the polymeric model for copper hydroxide/oxide as a component of hybrid interpolymeric complex with PVA. A distinctive feature observed for polymeric copper oxide is strong broadening of the optical absorption band at 400 nm. It is suggested that this effect is caused by strong electron–phonon interaction, which is also responsible for superconductivity of copper oxide based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shuji Saito und Haruhiko Okuyama. Die Adsorption von Kupfer auf Polyvinylalkohol. Kolloid Z. 139(3), 150–155 (1954)

    Article  Google Scholar 

  2. H. Yokoi, S. Kawata, M. Iwaizumi, Interaction modes between heavy metal ions and water-soluble polymers. 1. Spectroscopic and magnetic reexamination of the aqueous solutions of cupric ions and poly(vinyl alcohol). J. Am. Chem. Soc. 108, 3358–3361 (1986)

    Article  CAS  Google Scholar 

  3. I.Y. Prosanov, N.V. Bulina, A.C. Yu, Hybrid material polyvinyl alcohol-copper oxide and its electrical properties. Phys. Solid State 54(8), 1699–1703 (2012)

    Article  CAS  Google Scholar 

  4. R.W. Antony, Solid State Chemistry and Its Applications (Wiley, London, 1984)

    Google Scholar 

  5. Y. Cudennec, A. Lecerf, The transformation of Cu(OH)2 into CuO, revisited. Solid State Sci. 5, 1471–1474 (2003)

    Article  CAS  Google Scholar 

  6. Yu Li, X.-Y. Yang, J. Rooke, G. Van Tendeloo, B.-L. Su, Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance. J. Colloid Interface Sci. 348, 303–312 (2010)

    Article  CAS  Google Scholar 

  7. S.K. Shinde, D.P. Dubal, G.S. Ghodake, D.Y. Kim, V.J. Fulari, Nanoflower-like CuO/Cu(OH)2 hybrid thin films: synthesis and electrochemical supercapacitive properties. J. Electroanal. Chem. 732, 80–85 (2014)

    Article  CAS  Google Scholar 

  8. S.C. Lee, S.-H. Park, S.M. Lee, J.B. Lee, H.J. Kim, Synthesis and H2 uptake of Cu2(OH)3Cl, Cu(OH)2 and CuO nanocrystal aggregate. Catal. Today 120, 358–362 (2007)

    Article  CAS  Google Scholar 

  9. A.R. Hajipour, F. Mohammadsaleh, M.R. Sabzalian, Copper-containing polyvinyl alcohol composite systems: preparation, characterization and biological activity. J. Phys. Chem. Solids 83, 96–103 (2015)

    Article  Google Scholar 

  10. D.M. Ginsberg (ed), Physical Properties of High Temperature Superconductors (World Scientific, Singapore, 1989)

    Google Scholar 

  11. M. Sierka, Synergy between theory and experiment in structure resolution of low-dimensional oxides. Prog. Surf. Sci. 85, 398–434 (2010)

    Article  CAS  Google Scholar 

  12. T. Takahama, S.M. Saharin, K. Tashiro, Details of the intermolecular interactions in poly(vinyl alcohol)-iodine complexes as studied by quantum chemical calculations. Polymer 99, 566–579 (2016)

    Article  CAS  Google Scholar 

  13. I.Y. Prosanov, N.V. Bulina, K.B. Gerasimov, Complexes of polyvinyl alcohol with insoluble inorganic compounds. Phys. Solid State 55, 2132–2135 (2013)

    Article  CAS  Google Scholar 

  14. I.Y. Prosanov, E. Benassi, N.V. Bulina, A.A. Matvienko, Structure and properties of self-assembling low-dimensional hybrid materials: the case of cadmium halides in polyvinyl alcohol. Curr. Inorg. Chem. 7(3), 155–161 (2017)

    Article  Google Scholar 

  15. I.Y. Prosanov, E. Benassi, N.V. Bulina, Structure of hybrid interpolymeric complexes of zinc halides with polyvinyl alcohol. Curr. Appl. Polym. Sci. 2(1), 44–48 (2018)

    Article  Google Scholar 

  16. I.Y. Prosanov, E. Benassi, Structure of hybrid interpolymeric complexes of polyvinyl alcohol and halides of second group elements. Adv. Mater. Sci. Eng. 2017, 4931082 (2017)

    Article  Google Scholar 

  17. I.Y. Prosanov, S.T. Abdulrahman, S. Thomas, N.V. Bulina, K.B. Gerasimov, Complex of polyvinyl alcohol with boric acid: structure and use. Mater. Today Commun. 14, 77–81 (2018)

    Article  CAS  Google Scholar 

  18. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  19. R. Ditchfield, W.J. Hehre, J.A. Pople, Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54(1), 724–728 (1971)

    Article  CAS  Google Scholar 

  20. W.J. Hehre, R. Ditchfield, J.A. Pople, Self-consistent molecular orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 56(6), 2257–2261 (1972)

    Article  CAS  Google Scholar 

  21. P.C. Hariharan, J.A. Pople, Influence of polarization functions on molecular-orbital hydrogenation energies. Theor. Chem. Acc. 28, 213–222 (1973)

    Article  CAS  Google Scholar 

  22. P.C. Hariharan, J.A. Pople, Accuracy of AH equilibrium geometries by single determinant molecular-orbital theory. Mol. Phys. 27, 209–214 (1974)

    Article  CAS  Google Scholar 

  23. M.S. Gordon, The isomers of silacyclopropane. Chem. Phys. Lett. 76, 163–168 (1980)

    Article  CAS  Google Scholar 

  24. M.M. Francl, W.J. Pietro, W.J. Hehre, et .al. Self-consistent molecular orbital methods. 23. A polarization-type basis set for 2nd-row elements. J. Chem. Phys. 77, 3654–3665 (1982)

    Article  CAS  Google Scholar 

  25. R.C. Binning, L.A. Curtiss, Compact contracted basis-sets for 3rd-row atoms—GA-KR. J. Comp. Chem. 11, 1206–1216 (1990)

    Article  CAS  Google Scholar 

  26. J.-P. Blaudeau, M.P. McGrath, L.A. Curtiss, L. Radom, Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys. 107, 5016–5021 (1997)

    Article  CAS  Google Scholar 

  27. V.A. Rassolov, J.A. Pople, M.A. Ratner, T.L. Windus, 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998)

    Article  CAS  Google Scholar 

  28. V.A. Rassolov, M.A. Ratner, J.A. Pople, P.C. Redfern, L.A. Curtiss, 6-31G* basis set for third-row atoms. J. Comp. Chem. 22, 976–984 (2001)

    Article  CAS  Google Scholar 

  29. G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, J. Mantzaris, A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J. Chem. Phys. 89, 2193–2218 (1988)

    Article  CAS  Google Scholar 

  30. G.A. Petersson, M.A. Al-Laham, A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991)

    Article  CAS  Google Scholar 

  31. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011)

    Article  CAS  Google Scholar 

  32. T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)

    Article  CAS  Google Scholar 

  33. C.M. Breneman, K.B. Wiberg, Determining atom-centered monopoles from molecular electrostatic potentials—the need for high sampling density in formamide conformational-analysis. J. Comp. Chem. 11, 361–373 (1990)

    Article  CAS  Google Scholar 

  34. H.J. Bohórquez, C.F. Matta, R.J. Boyd, The localized electrons detector as an ab initio representation of molecular structures. Int. J. Quant. Chem. 110, 2418–2425 (2010)

    Google Scholar 

  35. E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garcia, A.J. Cohen, W. Yang, Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010)

    Article  CAS  Google Scholar 

  36. J. Andres, S. Berski, J. Contreras-Garcia, P. Gonzalez-Navarrete, Following the molecular mechanism for the NH3 + LiH -> LiNH2 + H-2 chemical reaction: a study based on the joint use of the quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) index. J. Phys. Chem. 118, 1663–1672 (2014)

    Article  CAS  Google Scholar 

  37. P. Cacciani, P. Čermák, J. Cosléou, J. El Romh, J. Hovorka, M. Khelkhal, Spectroscopy of ammonia in the range 6626–6805 cm−1: using temperature dependence towards a complete list of lower state energy transitions. Mol. Phys. 18, 2476–2485 (2014)

    Article  Google Scholar 

  38. M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, 2013)

    Google Scholar 

  39. I.Yu.. Prosanov, N.V. Bulina, Polymeric sulfides CdS, CuS, and NiS in polyvinyl alcohol matrix. Phys. Solid State 56, 1270–1272 (2014)

    Article  CAS  Google Scholar 

  40. H.R. Oswald, A. Reller, H.W. Schmalle, E. Dubler, Structure of copper(II) hydroxide, Cu(OH)2. Acta Cryst. C46, 2279–2284 (1990)

    CAS  Google Scholar 

  41. N. Mott, E. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, Oxford, 1971)

    Google Scholar 

  42. M. Abdelaziz, M.M. Ghannam, Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Phys. B 405, 958–964 (2010)

    Article  CAS  Google Scholar 

  43. H. Abdullah, N.A.N. Azmy, N.M. Naim, A.A. Hamid, S. Idris, Synthesis and fabrication of ZnO–CuO doped PVA and ZnO–PbO doped PVA nanocomposite films by using γ-radiolysis and it’s microbial sensor application. J Sol Gel Sci. Technol. 74(1), 15–23 (2015)

    Article  CAS  Google Scholar 

  44. D. Curie, Luminescence in Crystals (Wiley, London, 1963)

    Google Scholar 

  45. R.F.W. Bader, H. Essen, The characterization of atomic interactions. J. Chem. Phys. 80(5), 1943–1960 (1984)

    Article  CAS  Google Scholar 

  46. R.F.w. Bader, Atoms in Molecules. A Quantum Theory (Oxford University Press, Oxford, 1994)

    Google Scholar 

  47. R.F.W. Bader, A quantum-theory of molecular-structure and its applications. Chem. Rev. 91, 893–892 (1991)

    Article  CAS  Google Scholar 

  48. R.A. Boto, J. Contreras-Garcia, J. Tierny, J.-P. Piquemal, Interpretation of the reduced density gradient. Mol. Phys. 114, 1406–1414 (2016)

    Article  CAS  Google Scholar 

  49. Y. Zhang, H. He, K. Dong, S. Zhang, A DFT study on lignin dissolution in imidazolium-based ionic liquids. RSC Adv. 7, 12670–12682 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Siberian Supercomputer Center of the Siberian Branch of the Russian Academy of Sciences (SB RAS) is gratefully acknowledged for providing supercomputer facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Yu. Prosanov or E. Benassi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5116 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosanov, I.Y., Benassi, E., Bulina, N.V. et al. Polymeric Copper Oxide: Preparation and Investigation of Its Structure and Optical Properties. J Inorg Organomet Polym 28, 2328–2335 (2018). https://doi.org/10.1007/s10904-018-0897-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0897-5

Keywords

Navigation