Advertisement

One Step Synthesis of Nitrogen-Doped Graphene from Naphthalene and Urea by Atmospheric Chemical Vapor Deposition

  • Ali A. Dadkhah
  • Mohammad Rabiee Faradonbeh
  • Alimorad Rashidi
  • Saeideh Tasharofi
  • Firozeh Mansourkhani
Article
  • 100 Downloads

Abstract

Heavy metal pollutants in wastewater are a major environmental concern. In order to fabricate metal organic composite for adsorption of these pollutants, in a first step a pristine and several nitrogen doped graphene films were synthesized by chemical vapor deposition method. Preparation of graphene films was performed through a one-step co-growth of naphthalene and urea mixture as an inexpensive and easy technique to handle solid precursors. This was done over a copper catalyst at different growth temperatures. Different characterization methods including Raman spectroscopy, elemental analysis, and X-ray diffraction confirmed the quality of the pristine and doped graphene. This technique showed an increasing trend of the doping level (nitrogen concentration up to 5.1% overall) as the growth temperature decreased. Results showed that both nitrogen doping, and carrying the synthesis at higher temperatures increase the defects and wrinkles in the graphene. Furthermore, doping introduced a light shift in defect types from vacancy in pristine graphene to boundary type in nitrogen-doped samples, which are favorable for functionalization for environmental applications.

Keywords

Nitrogen-doped graphene Layered compounds Nano structures Chemical vapor deposition MOF Heavy metal removal 

Notes

Acknowledgements

The financial support for this research by Research Institute of Petroleum Industry (RIPI), Graduate office of Isfahan University of Technology, and Iran Nanotechnology Initiative Council is greatly appreciated.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10904_2018_853_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1106 KB)

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Science 306, 666 (2004)CrossRefGoogle Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  3. 3.
    Y. Sun, Q.Wu,G. Shi, Energ. Environ. Sci. 4, 1113 (2011)CrossRefGoogle Scholar
  4. 4.
    F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5, 26 (2011)CrossRefGoogle Scholar
  5. 5.
    D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 9, 1752 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Zhang, J. Li, Z. Wang, X. Wang, W. Feng, W. Zheng, C. Wenwu, P. Hu, Chem. Mater. 26, 2460 (2014)CrossRefGoogle Scholar
  7. 7.
    X. Wang, G. Sun, P. Routh, D. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 43, 7067 (2014)CrossRefGoogle Scholar
  8. 8.
    Y.B. Tang, L.C. Yin, Y. Yang, X.H. Bo, Y.L. Cao, H.E. Wang et al., ACS Nano 6, 1970 (2012)CrossRefGoogle Scholar
  9. 9.
    X.J. Hu, Y.G. Liu, H. Wang et al., Chem Eng. Res. Des. 93, 675 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Belea, V. Samanidoub, E. Deliyannia, Chem Eng. Res. Des. 109, 573 (2016)CrossRefGoogle Scholar
  11. 11.
    W. Konicki, M. Aleksandrzak, E. Mijowska, Chem Eng. Res. Des. 123, 35 (2017)CrossRefGoogle Scholar
  12. 12.
    R. Wang, J.Q. Qi, Y.W. Sui, Y. Chang, Y.Z. Hi, F.X. Wei, Q.K. Meng, Z. Sun, Y.L. Zhao, Mater. Lett. 184, 181 (2016)CrossRefGoogle Scholar
  13. 13.
    H.L. Guo, P. Su, X. Kang, S.K. Ning, J. Mater. Chem. A 1, 2248 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Qi, Y. Chang, Y. Sui, Y. He, Q. Meng, F. Wei, Y. Ren, Y. Jin, Adv. Mater. Interfaces (2018).  https://doi.org/10.1002/admi.201700985 Google Scholar
  15. 15.
    X. Liu, F. Wei, Y. Sui, J. Qi, Y. He, Q. Meng, J. Alloys Compd. 735, 1339 (2018)CrossRefGoogle Scholar
  16. 16.
    R. Wang, Y. Sui, S. Huang, Y. Pu, P. Cao, Chem. Eng. J. 331, 527 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Zhang, L. Sui, H. Dong, W. He, L. Dong, L. Yu, ACS Appl. Mater. Interfaces (2018).  https://doi.org/10.1021/acsami.8b00323 Google Scholar
  18. 18.
    S. Zhang, L. Sui, H. Kang, H. Dong, L. Dong, L. Yu, Small 14, 1702570 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, ACS Nano 4, 1790 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Wang, C. Zhang, Z. Liu et al., J. Mater. Chem. 21, 5430 (2011)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, K. Fugane, T. Mori, L. Niu, J. Ye, J. Mater. Chem. 22, 6575 (2012)CrossRefGoogle Scholar
  22. 22.
    L. Qu, Y. Liu, J.B. Baek, L. Dai, ACS Nano 4, 1321 (2010)CrossRefGoogle Scholar
  23. 23.
    Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Nature 468, 549 (2010)CrossRefGoogle Scholar
  24. 24.
    Z. Jin, J. Yao, C. Kittrell, J.M. Tour, ACS Nano 5, 4112 (2011)CrossRefGoogle Scholar
  25. 25.
    J.F. Bao, N. Kishi, T. Soga, Mater. Lett. 117, 199 (2014)CrossRefGoogle Scholar
  26. 26.
    Z. Wang, P. Li, Y. Chen, J. Liu, H. Tian, J. Zhou, W. Zhang, Y. Li, J. Mater. Chem. C2, 7396 (2014)Google Scholar
  27. 27.
    B.D. Cullity, S.R. Stock, Elements of X–ray diffraction, 3rd edn. (Pearson, London, 2014)Google Scholar
  28. 28.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  29. 29.
    I. Calizo, W. Bao, F. Miao, C.N. Lau, A.A. Balandin, Appl. Phys. Lett. 91, 201904 (2007)CrossRefGoogle Scholar
  30. 30.
    I. Calizo, I.D. Teweldebrhan, W. Bao, F. Miao, F.C.N. Lau, J. Phys. Conf. Ser. 109, 4 (2008)CrossRefGoogle Scholar
  31. 31.
    I. Calizo, I. Bejenari, M. Rahman, G. Liu, A.A. Balandin, J. Appl. Phys. 106, 043509 (2009)CrossRefGoogle Scholar
  32. 32.
    B. Tang, H. Guoxin, H. Gao, App. Spectrosc. Rev. 45, 369 (2010)CrossRefGoogle Scholar
  33. 33.
    C.D. Liao, Y.Y. Lu, S.R. Tamalampudi, H.C. Cheng, Y.T. Chen, J. Phys. Chem. A 117, 9454 (2013)CrossRefGoogle Scholar
  34. 34.
    Z.H. Ni, T. Yu, Z.Q. Luo et al., ACS Nano 3, 569 (2009)CrossRefGoogle Scholar
  35. 35.
    A.A. Koós, M. Dowling, K. Jurkschat, A. Crossley, N. Grobert, Carbon 47, 30 (2009)CrossRefGoogle Scholar
  36. 36.
    P. Venezuela, M. Lazzeri, F. Mauri, Phys. Rev. B 84, 035433 (2011)CrossRefGoogle Scholar
  37. 37.
    A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi, Nano Lett. 12, 3925 (2012)CrossRefGoogle Scholar
  38. 38.
    Z. Zafar, Z.H. Ni, X. Wu, Z.X. Shi, H.Y. Nan, J. Bai, L.T. Sun, Carbon 61, 57 (2013)CrossRefGoogle Scholar
  39. 39.
    Y. Sui, B. Zhu, H. Zhang et al., Carbon 81, 814 (2015)CrossRefGoogle Scholar
  40. 40.
    Y. Tian, F. Wang, Y. Liu, F. Pangc, X. Zhang, Electrochim. Acta 146, 646 (2014)CrossRefGoogle Scholar
  41. 41.
    Z. Wen, X. Wang, S. Mao et al., Adv. Mater. 24, 5610 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Research Institute of Petroleum Industry (RIPI)TehranIran
  3. 3.Research Institute of Petroleum Industry (RIPI), Research Group of Ecology and Environmental PollutionTehranIran
  4. 4.School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations