Effect of Polymer Structure on Precursor Diffusion and Particle Formation in Polymer Matrix Nanocomposites

  • Fan W. Zeng
  • Dajie Zhang
  • James B. Spicer


Palladium nanoparticles were synthesized in a semi-crystalline poly[tetrafluoroethylene-co-(perfluoropropyl vinyl ether)] matrix using a chemical infusion technique where a chemical precursor is vaporized and diffused into the polymer matrix. Once in the matrix, the precursor is made to decompose resulting in nanoparticle formation. The effect of polymer structure on precursor diffusion was investigated by comparing the diffusion behavior of the precursor molecules in the as-received polymer as well as in a heat-treated polymer matrix. Results from the diffusivity measurements were interpreted using a free volume model to gain a physical and conceptual understanding of precursor diffusion in fluoropolymers. In addition, transmission electron microscopy analysis was performed on the polymer matrix nanocomposites, and significant differences in particle size and spatial distributions were found between nanocomposites synthesized using as-received and heat-treated polymer matrices. Both precursor diffusivity and particle formation changed as a result of modifications to the polymer matrix suggesting that the particle size and spatial distribution are determined by the structure and morphology of the polymer matrix and are likely linked to the free volume of the polymer.


Polymer matrix nanocomposites Heat treatment Free volume Transmission electron microscopy 



The authors gratefully acknowledge support by the National Science Foundation through the CMMI Division under Award Number 1462151.


  1. 1.
    E.M. Hotze, T. Phenrat, G.V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39(6), 1909 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Oliveira, A.V. Machado, Preparation of polymer-based nanocomposites by different routes. Nanocomposites 2013, 1–22 (2013)Google Scholar
  3. 3.
    S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, D. Zhu, Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands. Chem. Phys. Lett. 356, 403–408 (2002)CrossRefGoogle Scholar
  4. 4.
    T.S. Koloski, T.G. Vargo, U.S. Patent 5,977,241, 1999Google Scholar
  5. 5.
    T.J. DeJournett, J.B. Spicer, The influence of oxygen on the microstructural, optical and photochromic properties of polymer-matrix, tungsten-oxide nanocomposite films. Solar Energy Mater. Solar Cells 120, 102 (2014)CrossRefGoogle Scholar
  6. 6.
    T.J. Dejournett, J.B. Spicer, Photoinduced silver precursor decomposition for particle modification in tungsten oxide polymer matrix nanocomposites. J. Phys. Chem. C 118(18), 9820 (2014)CrossRefGoogle Scholar
  7. 7.
    T.J. DeJournett, J.B. Spicer, Laser-induced, in situ, nanoparticle shell synthesis in polymer matrix nanocomposites. Phys. Chem. Chem. Phys. 15(45), 19753 (2013)CrossRefGoogle Scholar
  8. 8.
    N. Cioffi, L. Torsi, I. Farella, D. Altamura, A. Valentini, N. Ditaranto, L. Sabbatini, P.G. Zambonin, T. Bleve-Zacheo, Deposition and analytical characterization of fluoropolymer thin films modified by palladium nanoparticles. Thin Solid Films 449(1), 25 (2004)CrossRefGoogle Scholar
  9. 9.
    J.A. Horas, M.G. Rizzotto, Gas diffusion in partially crystalline polymers part I: concentration dependence. J. Polym. Sci. B 34(9), 1541 (1996)CrossRefGoogle Scholar
  10. 10.
    W. Vieth, W.F. Wuerth, Transport properties and their correlation with the morphology of thermally conditioned polypropylene. J. Appl. Polym. Sci. 13(4), 685 (1969)CrossRefGoogle Scholar
  11. 11.
    M. Galizia, C. Daniel, G. Fasano, G. Guerra, G. Mensitieri, Gas sorption and diffusion in amorphous and semicrystalline nanoporous poly(2,6-dimethyl-1,4-phenylene)oxide. Macromolecules 45(8), 3604 (2012)CrossRefGoogle Scholar
  12. 12.
    L. Masaro, X.X. Zhu, Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci. 24(5), 731 (1999)CrossRefGoogle Scholar
  13. 13.
    C. Nagel, K. Gu, D. Fritsch, T. Strunskus, F. Faupel, Free volume and transport properties in highly selective polymer membranes. Macromolecules 35(6), 2071 (2002)CrossRefGoogle Scholar
  14. 14.
    A.K. Doolittle, Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free-space. J. Appl. Phys. 22(12), 1471 (1951)CrossRefGoogle Scholar
  15. 15.
    T.G. Fox, P.J. Flory, Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21(6), 581 (1950)CrossRefGoogle Scholar
  16. 16.
    T.G. Fox, P.J. Flory, Further studies on the melt viscosity of polyisobutylene. J. Phys. Chem. 55(2), 221 (1951)CrossRefGoogle Scholar
  17. 17.
    M. Karimi, Mass Transfer in Chemical Engineering Processes (InTech, Rijeka, 2011), p. 17Google Scholar
  18. 18.
    A. Alentiev, Y. Yampolskii, V. Shantarovich, S. Nemser, N. Plate, High transport parameters and free volume of peruorodioxole copolymers. J. Membr. Sci. 126, 123 (1997)CrossRefGoogle Scholar
  19. 19.
    P.N. Patil, D. Roilo, R.S. Brusa, A. Miotello, S. Aghion, R. Ferragut, R. Checchetto, Free volumes and gas transport in polymers: amine-modified epoxy resins as a case study. Phys. Chem. Chem. Phys 18(18), 3817 (2016)CrossRefGoogle Scholar
  20. 20.
    P. Huo, P. Cebe, Dielectric relaxation of poly(phenylene sulfide) containing a fraction of rigid amorphous phase. J. Polym. Sci. B 30(3), 239 (1992)CrossRefGoogle Scholar
  21. 21.
    P. Huo, P. Cebe, Temperature-dependent relaxation of the crystal-amorphous interphase in poly(ether ether ketone). Macromolecules 25(2), 902 (1992)CrossRefGoogle Scholar
  22. 22.
    G. Calleja, A. Jourdan, B. Ameduri, J.P. Habas, Where is the glass transition temperature of poly(tetrafluoroethylene)? A new approach by dynamic rheometry and mechanical tests. Eur. Polym. J. 49(8), 2214 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Lin, S. Shenogin, S. Nazarenko, Oxygen solubility and specific volume of rigid amorphous fraction in semicrystalline poly(ethylene terephthalate). Polymer 43(17), 4733 (2002)CrossRefGoogle Scholar
  24. 24.
    B.G. Olson, J. Lin, S. Nazarenko, A.M. Jamieson, Positron annihilation lifetime spectroscopy of poly(ethylene terephthalate): contributions from rigid and mobile amorphous fractions. Macromolecules 36(20), 7618 (2003)CrossRefGoogle Scholar
  25. 25.
    V. Cominos, a Gavriilidis, Sublimation and deposition behaviour of palladium (II) acetylacetonate. Eur. Phys. J. Appl. Phys. 15(01), 23 (2001)CrossRefGoogle Scholar
  26. 26.
    B. Janković, S. Mentus, Model-fitting and model-free analysis of thermal decomposition of palladium acetylacetonate [Pd(acac)2]. J. Therm. Anal. Calorim. 94(2), 395 (2008)CrossRefGoogle Scholar
  27. 27.
    G.S.Y. Yeh, R. Hosemann, J. Loboda-C, Annealing effects of polymers and their underlying molecular mechanisms. Polymer 17(4), 309 (1976)CrossRefGoogle Scholar
  28. 28.
    E.W. Fischer, Effect of annealing and temperature on the morphological structure of polymers. Pure Appl. Chem. 31(1), 1365 (1972)Google Scholar
  29. 29.
    T. Nyuui, A. Fujimori, Effect of Fixed Annealing and free shrinkage to the crystalline fluorinated copolymer film with high transparency. Trans. Mater. Res. Soc. Jpn. 36(2), 137 (2011)CrossRefGoogle Scholar
  30. 30.
    Y. Srithep, P. Nealey, L.S. Turng, Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym. Eng. Sci. 53(3), 580 (2013)CrossRefGoogle Scholar
  31. 31.
    R.L. Blaine, Determination of Polymer Crystallinity by DSC (TA Instrument Publication, New Castel, 2010)Google Scholar
  32. 32.
    A. Teverovsky, A Rapid Technique for Moisture Diffusion Characterization of Molding Compounds in PEMs. Tech. rep., QSS Group, Inc./Goddard Operations (2002)Google Scholar
  33. 33.
    E.L. Cussler, Diffusion (Cambridge University Press, Cambridge, 2009), pp. 237–273CrossRefGoogle Scholar
  34. 34.
    S. Lee, K.S. Knaebel, Effects of mechanical and chemical properties on transport in fluoropolymers. I. Transient sorption. J. Appl. Polym. Sci. 64(3), 455 (1997)CrossRefGoogle Scholar
  35. 35.
    T.M. Aminabhavi, R.S. Munnolli, W.M. Stahl, S.V. Gangal, Sorption and diffusion of organic esters into fluoropolymer membranes. J. Appl. Polym. Sci. 48(5), 857 (1993)CrossRefGoogle Scholar
  36. 36.
    DuPont, Teflon ® PFA Properties Handbook (DuPont, Wilmington, 1996)Google Scholar
  37. 37.
    T.R. Dargaville, G.A. George, D.J.T. Hill, A.K. Whittaker, An investigation of the thermal and tensile properties of PFA following \(\gamma\)-radiolysis. Macromolecules 36(19), 7132 (2003)CrossRefGoogle Scholar
  38. 38.
    F. Cardona, D. Hill, G. George, J. Maeji, R. Firas, S. Perera, Thermal characterization of copolymers obtained by radiation grafting of styrene onto poly(tetrafluoroethylene-perfluoropropylvinylether) substrates: thermal decomposition, melting behavior and low-temperature transitions. Polym. Degrad. Stab. 74(2), 219 (2001)CrossRefGoogle Scholar
  39. 39.
    A. Fujimori, M. Hasegawa, T. Masuko, Spherulitic structures of poly [tetrafluoroethylene-co-(perfluoroalkyl vinyl ether)]. Polym. Int. 56(10), 1281 (2007)CrossRefGoogle Scholar
  40. 40.
    M. Endo, A. Ohnishi, S. Kutsumizu, T. Shimizu, S. Yano, Crystallization in binary blends of polytetrafluoroethylene with perfluorinated tetrafluoroethylene copolymer. Polym. J. 36, 716 (2004)CrossRefGoogle Scholar
  41. 41.
    S. Thomas, D. Ponnamma, A. Zachariah, Polymer Processing and Characterization (Apple Academic Press, Toronto, 2012)CrossRefGoogle Scholar
  42. 42.
    J. Bitter, Effect of crystallinity and swelling on the permeability and selectivity of polymer membranes. Desalination 51(1), 19 (1984)CrossRefGoogle Scholar
  43. 43.
    S.W. Lasoski, W.H. Cobbs, Moisture permeability of polymers. I. Role of crystallinity and orientation. J. Polym. Sci. 36(130), 21 (1959)CrossRefGoogle Scholar
  44. 44.
    V. Mittal, Crystallinity, mechanical property and oxygen permeability of polypropylene: effect of processing conditions, nucleating agent and compatibilizer. J. Thermoplast. Compos. Mater. 26(10), 1407 (2013)CrossRefGoogle Scholar
  45. 45.
    G. Matsuba, T. Nyuui, S. Sato, K. Nagai, Estimation of crystalline structure and gas transport properties of crystalline fluorinated copolymer. Meet. Abstr. MA2015–01(40), 2109 (2015)Google Scholar
  46. 46.
    D. Turnbullmorrel, H. Cohen, D. Turnbull, M.H. Cohen, Free-volume model of the amorphous phase: glass transition. J. Chem. Phys. 34(1), 120–125 (1961)CrossRefGoogle Scholar
  47. 47.
    H. Fujita, Fortschritte Der Hochpolymeren-Forschung (Springer, Berlin, 1961), pp. 1–47Google Scholar
  48. 48.
    Ki Okamoto, K. Tanaka, M. Katsube, H. Kita, O. Sueoka, Y. Ito, Correlation between positron annihilation and gas diffusion properties of various rubbery polymers. Polym. J. 25(3), 275 (1993)CrossRefGoogle Scholar
  49. 49.
    G. Dlubek, A. Sen Gupta, J. Pionteck, R. Häßler, R. Krause-Rehberg, H. Kaspar, K.H. Lochhaas, Glass transition and free volume in the mobile (MAF) and rigid (RAF) amorphous fractions of semicrystalline PTFE: a positron lifetime and PVT study. Polymer 46(16), 6075 (2005)CrossRefGoogle Scholar
  50. 50.
    G. Dlubek, M.A. Alam, K. Saarinen, J. Stejny, H.M. Fretwell, Relations between hole volume and macroscopic volume in various polymers. Acta Phys. Pol. A 95, 521 (1999)CrossRefGoogle Scholar
  51. 51.
    R. Srithawatpong, Z.L. Peng, B.G. Olson, A.M. Jamieson, R. Simha, J.D. Mcgervey, T.R. Maier, A.F. Halasa, H. Ishida, Positron annihilation lifetime studies of changes in free volume on cross-linking cis-polyisoprene, high-vinyl polybutadiene, and their miscible blends. J. Polym. Sci. B 37, 2754 (1999)CrossRefGoogle Scholar
  52. 52.
    R. Simha, P.S. Wilson, Thermal expansion of amorphous polymers at atmospheric pressure. II. Theoretical considerations. Macromolecules 6(6), 908 (1973)CrossRefGoogle Scholar
  53. 53.
    M.L. Cheng, Y.M. Sun, Effect of thermal history on the free volume properties of semi-crystalline poly(3-hydroxybutyrate- co -3-hydroxyvalerate) membranes by positron annihilation lifetime spectroscopy. J. Polym. Sci. B 47(9), 855 (2009)CrossRefGoogle Scholar
  54. 54.
    G. Nter Dlubek, J. Rgen Pionteck, K. Rätzke, J. Kruse, F. Faupel, Temperature dependence of the free volume in amorphous teflon AF1600 and AF2400: a pressure–volume–temperature and positron lifetime study. Macromolecules 41(16), 6125 (2008)CrossRefGoogle Scholar
  55. 55.
    A.R. Siedle, T.J. Kistenmacher, R.M. Metzger, C.S. Kuo, R.P. Van Duyne, T. Cape, (Tetrathiafulvalene)bis(acetylacetonato)palladium(II), (TTF)Pd(acac)2, a metallotetrathiaethylene containing neutral tetrathiafulvalene. Inorg. Chem. 19(7), 2048 (1980)CrossRefGoogle Scholar
  56. 56.
    J. Liu, Q. Deng, Y.C. Jean, Free-volume distributions of polystyrene probed by positron annihilation: comparison with free-volume theories. Macromolecules 26(26), 7149 (1993)CrossRefGoogle Scholar
  57. 57.
    R.A.L. Vallée, N. Tomczak, L. Kuipers, G.J. Vancso, N.F. van Hulst, Single molecule lifetime fluctuations reveal segmental dynamics in polymers. Phys. Rev. Lett. 91(3), 038301 (2003)CrossRefGoogle Scholar
  58. 58.
    R.A.L. Vallée, M. Cotlet, M. Van Der Auweraer, J. Hofkens, K. Müllen, F.C. De Schryver, Single-molecule conformations probe free volume in polymers. J. Am. Chem. Soc. 126(8), 2296 (2004)CrossRefGoogle Scholar
  59. 59.
    R.E. Robertson, Computational Modeling of Polymers (Marcel Dekker, Midland, 1992), p. 297Google Scholar
  60. 60.
    R.E. Robertson, Effect of free-volume fluctuations on polymer relaxation in the glassy state. J. Polym. Sci. 63(1), 173 (2007)Google Scholar
  61. 61.
    K. Nakamura, T. Kawabata, Y. Mori, Size distribution analysis of colloidal gold by small angle X-ray scattering and light absorbance. Powder Technol. 131(2), 120 (2003)CrossRefGoogle Scholar
  62. 62.
    R. Bienert, F. Emmerling, A.F. Thünemann, The size distribution of gold standard nanoparticles. Anal. Bioanal. Chem. 395(6), 1651 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Johns Hopkins University Applied Physics LaboratoryLaurelUSA

Personalised recommendations