Synthesis of Novel (Polymer Blend-Ceramics) Nanocomposites: Structural, Optical and Electrical Properties for Humidity Sensors

  • Ahmed Hashim
  • Qassim Hadi


Fabrication of novel nanocomposites films of (PVA–CMC) blend and (PVA–CMC) blend doped by niobium carbide nanoparticles has been investigated. The structural, optical and electrical properties of (PVA–CMC–NbC) nanocomposites for humidity sensors have been studied. The (PVA–CMC–NbC) nanocomposites were prepared with different concentrations of (polyvinyl alcohol and carboxyl methyl cellulose) and Niobium carbide nanoparticles. The experimental results of optical properties for (PVA–CMC–NbC) nanocomposites showed that the absorbance, absorption coefficient, extinction coefficient, refractive index, real and imaginary dielectric constants and optical conductivity of (PVA–CMC) blend increase with increase in Niobium carbide nanoparticles concentrations. The transmittance and energy band gap decrease with increase in Niobium carbide nanoparticles concentrations. The DC electrical properties of (PVA–CMC–NbC) nanocomposites showed that the electrical conductivity of the blend increases with increase in NbC nanoparticles concentrations. The experimental results of novel (PVA–CMC–NbC) nanocomposites applications showed that the (PVA–CMC–NbC) nanocomposites have high sensitivity for relative humidity.


Niobium carbide Optical Electrical Nanocomposites Conductivity Energy gap Absorbance Sensitivity Humidity 


  1. 1.
    S.B. Aziz, M.A. Rasheed, H.M. Ahmed, Synthesis of polymer nanocomposites based on [methyl cellulose](1–x):(CuS)x (0.02M ≤ x ≥ 08 M) with desired optical band gaps. Polymers 9, 194 (2017)CrossRefGoogle Scholar
  2. 2.
    I.R. Agool, K.J. Kadhim, A. Hashim, Synthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plast. Technol. 21, 444–453 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Hashim, M.A. Habeeb, A. Khalaf, A. Hadi, Fabrication of (PVA-PAA) blend-extracts of plants bio-composites and studying their structural, electrical and optical properties for humidity sensors applications. Sens. Lett. 15, 589–596 (2017)CrossRefGoogle Scholar
  4. 4.
    M.A. Habeeb, A. Hashim, A. Hadi, Fabrication of new nanocomposites: CMC-PAA-PbO2 nanoparticles for piezoelectric sensors and gamma radiation shielding applications. Sens. Lett. 15, 785–790 (2017)CrossRefGoogle Scholar
  5. 5.
    I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. 21, 397–403 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Karthick, H.-S. Lee, S.J. Kwon, R. Natarajan, V. Saraswathy, Standardization, calibration, and evaluation of tantalum-nano rGO-SnO2 composite as a possible candidate material in humidity sensors. Sensors 16, 2079 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Hashim, M.A. Habeeb, A. Hadi, Synthesis of novel polyvinyl alcohol–starch-copper oxide nanocomposites for humidity sensors applications with different temperatures. Sens. Lett. 15, 758–761 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Suresh, Investigation of the optical and dielectric properties of the urea L-malic acid NLO single crystal. Am. Chem. Sci. J. 3, 3 (2013)CrossRefGoogle Scholar
  9. 9.
    N.G. Imam, M.B. Mohamed, Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra. J. Mol. Struct. 1105, 80–86 (2016)CrossRefGoogle Scholar
  10. 10.
    I.R. Agool, K.J. Kadhim, A. Hashim, Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrrolidinone–titanium oxide nanoparticles) nanocomposites: electrical properties for energy storage and release. Int. J. Plast. Technol. 20(1), 121–127 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. Al-Ramadhan, A. Hashim, A.J.K. Algidsawi, The DC electrical properties of (PVC-Al2O3) composites. AIP Conf. Proc. 1400, 1 (2011)Google Scholar
  12. 12.
    A. Pal Indolia, M.S. Gaur, Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J. Polym. Res. 20(43), 1–8 (2013)Google Scholar
  13. 13.
    P. Phukan, D. Saikia, Optical and structural investigation of CdSe quantum dots dispersed in PVA matrix and photovoltaic applications. Int. J. Photoenergy (2013). Google Scholar
  14. 14.
    G.A.M. Amin, M.H. Abd-El Salam, Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles. J. Mater. Res. Express 1, 1–8 (2014)Google Scholar
  15. 15.
    N.B. Rithin Kumar, V. Crasta, B.M. Praveen, Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10–98) doped by ZnO nanoparticles. Phys. Res. Int. J. (2014). Google Scholar
  16. 16.
    S. Salman, N. Bakr, M.H. Mahmood, Preparation and study of some optical properties of (PVA- Ni(CH3COO)2) composites. Int. J. Curr. Res. 6(11), 9638–9643 (2014)Google Scholar
  17. 17.
    A.M. Abdelghany, E.M. Abdelrazek, D. Rashad, Impact of in situ preparation of CdS filled PVP nano-composite. J. Spectrochim. Acta A 130, 302–308 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Hegazy, M. Eid, M. Madani, Effect of Ni nano particles on thermal, optical and electrical behaviour of irradiated PVA/AAc films. Arab J. Nucl. Sci. Appl. 47(1), 41–52 (2014)Google Scholar
  19. 19.
    W. Al-Taa’y, M. Abdul Nabi, R.M. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Effect of nano ZnO on the optical properties of poly(vinyl chloride) films. Int. J. Polym. Sci. (2014). Google Scholar
  20. 20.
    O. Gh. Abdullah, Influence of barium salt on optical behavior of PVA based solid polymer electrolytes. Eur. Sci. J. 10, 33 (2014)Google Scholar
  21. 21.
    O. Gh., B. Aziz, D. Mohammed, Structural and optical properties of PVA:Na2S2O3 polymer electrolytes films. Indian J. Appl. Res. 3(11), 477–480 (2013)Google Scholar
  22. 22.
    M. Venkatarayappa, S. Kilarkaje, A. Prasad, D. Hundekal, Refractive index and dispersive energy of NiSO4 doped poly(ethylene oxide) films. J. Mater. Sci. Eng. A 1, 964–973 (2011)Google Scholar
  23. 23.
    S.S. Basha, G.S. Sundari, K.V. Kumar, Optical, thermal and electrical studies of PVP based solid polymer electrolyte for solid state battery applications. Int. J. ChemTech Res. 9(2), 165–175 (2016)Google Scholar
  24. 24.
    S.C. Nagaraju, S. Aashis, J.B. Roy, K.R. Prasanna Kumar, G. Anilkumar, Ramagopal, Humidity sensing properties of surface modified polyaniline metal oxide composites. J. Eng. (2014). Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, College of Education for Pure SciencesUniversity of BabylonHillahIraq

Personalised recommendations