Skip to main content
Log in

Synthesis of Novel (Polymer Blend-Ceramics) Nanocomposites: Structural, Optical and Electrical Properties for Humidity Sensors

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Fabrication of novel nanocomposites films of (PVA–CMC) blend and (PVA–CMC) blend doped by niobium carbide nanoparticles has been investigated. The structural, optical and electrical properties of (PVA–CMC–NbC) nanocomposites for humidity sensors have been studied. The (PVA–CMC–NbC) nanocomposites were prepared with different concentrations of (polyvinyl alcohol and carboxyl methyl cellulose) and Niobium carbide nanoparticles. The experimental results of optical properties for (PVA–CMC–NbC) nanocomposites showed that the absorbance, absorption coefficient, extinction coefficient, refractive index, real and imaginary dielectric constants and optical conductivity of (PVA–CMC) blend increase with increase in Niobium carbide nanoparticles concentrations. The transmittance and energy band gap decrease with increase in Niobium carbide nanoparticles concentrations. The DC electrical properties of (PVA–CMC–NbC) nanocomposites showed that the electrical conductivity of the blend increases with increase in NbC nanoparticles concentrations. The experimental results of novel (PVA–CMC–NbC) nanocomposites applications showed that the (PVA–CMC–NbC) nanocomposites have high sensitivity for relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.B. Aziz, M.A. Rasheed, H.M. Ahmed, Synthesis of polymer nanocomposites based on [methyl cellulose](1–x):(CuS)x (0.02M ≤ x ≥ 08 M) with desired optical band gaps. Polymers 9, 194 (2017)

    Article  CAS  Google Scholar 

  2. I.R. Agool, K.J. Kadhim, A. Hashim, Synthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plast. Technol. 21, 444–453 (2017)

    Article  CAS  Google Scholar 

  3. A. Hashim, M.A. Habeeb, A. Khalaf, A. Hadi, Fabrication of (PVA-PAA) blend-extracts of plants bio-composites and studying their structural, electrical and optical properties for humidity sensors applications. Sens. Lett. 15, 589–596 (2017)

    Article  Google Scholar 

  4. M.A. Habeeb, A. Hashim, A. Hadi, Fabrication of new nanocomposites: CMC-PAA-PbO2 nanoparticles for piezoelectric sensors and gamma radiation shielding applications. Sens. Lett. 15, 785–790 (2017)

    Article  Google Scholar 

  5. I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. 21, 397–403 (2017)

    Article  CAS  Google Scholar 

  6. S. Karthick, H.-S. Lee, S.J. Kwon, R. Natarajan, V. Saraswathy, Standardization, calibration, and evaluation of tantalum-nano rGO-SnO2 composite as a possible candidate material in humidity sensors. Sensors 16, 2079 (2016)

    Article  CAS  Google Scholar 

  7. A. Hashim, M.A. Habeeb, A. Hadi, Synthesis of novel polyvinyl alcohol–starch-copper oxide nanocomposites for humidity sensors applications with different temperatures. Sens. Lett. 15, 758–761 (2017)

    Article  Google Scholar 

  8. S. Suresh, Investigation of the optical and dielectric properties of the urea L-malic acid NLO single crystal. Am. Chem. Sci. J. 3, 3 (2013)

    Article  Google Scholar 

  9. N.G. Imam, M.B. Mohamed, Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra. J. Mol. Struct. 1105, 80–86 (2016)

    Article  CAS  Google Scholar 

  10. I.R. Agool, K.J. Kadhim, A. Hashim, Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrrolidinone–titanium oxide nanoparticles) nanocomposites: electrical properties for energy storage and release. Int. J. Plast. Technol. 20(1), 121–127 (2016)

    Article  CAS  Google Scholar 

  11. Z. Al-Ramadhan, A. Hashim, A.J.K. Algidsawi, The DC electrical properties of (PVC-Al2O3) composites. AIP Conf. Proc. 1400, 1 (2011)

    Google Scholar 

  12. A. Pal Indolia, M.S. Gaur, Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J. Polym. Res. 20(43), 1–8 (2013)

    Google Scholar 

  13. P. Phukan, D. Saikia, Optical and structural investigation of CdSe quantum dots dispersed in PVA matrix and photovoltaic applications. Int. J. Photoenergy (2013). https://doi.org/10.1155/2013/728280

    Article  Google Scholar 

  14. G.A.M. Amin, M.H. Abd-El Salam, Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles. J. Mater. Res. Express 1, 1–8 (2014)

    Google Scholar 

  15. N.B. Rithin Kumar, V. Crasta, B.M. Praveen, Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10–98) doped by ZnO nanoparticles. Phys. Res. Int. J. (2014). https://doi.org/10.1155/2014/742378

    Article  Google Scholar 

  16. S. Salman, N. Bakr, M.H. Mahmood, Preparation and study of some optical properties of (PVA- Ni(CH3COO)2) composites. Int. J. Curr. Res. 6(11), 9638–9643 (2014)

    Google Scholar 

  17. A.M. Abdelghany, E.M. Abdelrazek, D. Rashad, Impact of in situ preparation of CdS filled PVP nano-composite. J. Spectrochim. Acta A 130, 302–308 (2014)

    Article  CAS  Google Scholar 

  18. D. Hegazy, M. Eid, M. Madani, Effect of Ni nano particles on thermal, optical and electrical behaviour of irradiated PVA/AAc films. Arab J. Nucl. Sci. Appl. 47(1), 41–52 (2014)

    Google Scholar 

  19. W. Al-Taa’y, M. Abdul Nabi, R.M. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Effect of nano ZnO on the optical properties of poly(vinyl chloride) films. Int. J. Polym. Sci. (2014). https://doi.org/10.1155/2014/697809

    Article  Google Scholar 

  20. O. Gh. Abdullah, Influence of barium salt on optical behavior of PVA based solid polymer electrolytes. Eur. Sci. J. 10, 33 (2014)

    Google Scholar 

  21. O. Gh., B. Aziz, D. Mohammed, Structural and optical properties of PVA:Na2S2O3 polymer electrolytes films. Indian J. Appl. Res. 3(11), 477–480 (2013)

    Google Scholar 

  22. M. Venkatarayappa, S. Kilarkaje, A. Prasad, D. Hundekal, Refractive index and dispersive energy of NiSO4 doped poly(ethylene oxide) films. J. Mater. Sci. Eng. A 1, 964–973 (2011)

    Google Scholar 

  23. S.S. Basha, G.S. Sundari, K.V. Kumar, Optical, thermal and electrical studies of PVP based solid polymer electrolyte for solid state battery applications. Int. J. ChemTech Res. 9(2), 165–175 (2016)

    CAS  Google Scholar 

  24. S.C. Nagaraju, S. Aashis, J.B. Roy, K.R. Prasanna Kumar, G. Anilkumar, Ramagopal, Humidity sensing properties of surface modified polyaniline metal oxide composites. J. Eng. (2014). https://doi.org/10.1155/2014/925020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, A., Hadi, Q. Synthesis of Novel (Polymer Blend-Ceramics) Nanocomposites: Structural, Optical and Electrical Properties for Humidity Sensors. J Inorg Organomet Polym 28, 1394–1401 (2018). https://doi.org/10.1007/s10904-018-0837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0837-4

Keywords

Navigation