High Performance Thermoplastic Blends Modified by Potassium Hexatitanate for Dielectric Applications

  • E. Dhanumalayan
  • Girish M. Joshi


In the present research, we explored the dielectric properties of polyvinylidene fluoride/polymethyl methacrylate blends modified by inorganic potassium hexatitanate (K2Ti6O13). The phase and structural morphology of the samples were analyzed in detail using X-ray diffraction, polarizing optical microscope, scanning electron microscope, and atomic force microscope (AFM) techniques. Microscopic analysis of the modified blends exhibits the effect of filler over the surface morphology of the polymer phases. The thermal properties of the prepared samples were estimated using thermogravimetric analysis. The dielectric properties of the modified blends were measured across broadband frequency as a function of temperature (30–150 °C). Dielectric constant (εr) was increased as a function of loading of K2Ti6O13 and decreased to relative dissipation factor (tanδ). Nanoscale two dimensional and three dimensional AFM topographic phase images demonstrated the effect of K2Ti6O13 which increased the average surface roughness (Ra) of the polymer blends. This investigation can be useful for designing a broad range of dielectric materials for engineering applications.

Graphical Abstract

High dielectric properties and characterization of modified thermoplastic blends as function of PHT loading.


Polymer blends K2Ti6O13 Morphology Thermal properties Dielectric properties 



Authors are thanking Mr. Albert V. Tamashausky, Corporate Director of Technical Services, Asbury carbons, NJ, USA for providing potassium hexatitanate powder, Naval Research Board, Defense Research, and Development Organization (NRB-DRDO), New Delhi, (No. 259/Mat./11-12), for the electrical characterization facility availed from the project and VIT, Vellore for providing the SEM under DST-FIST, AFM and XRD central characterization facilities.


  1. 1.
    S. Sanchez-Valdes, L.F. Ramos-De Valle, O. Manero, Handbook of Polymer Synthesis, Characterization, and Processing (Wiley, New York, 2013)Google Scholar
  2. 2.
    R. Li, C. Xiong, D. Kuang, L. Dong, Y. Lei, J. Yao, M. Jiang, L. Li, Polyamide 11/poly (vinylidene fluoride) blends as novel flexible materials for capacitors. Macromol. Rapid Commun. 29(17), 1449 (2008)CrossRefGoogle Scholar
  3. 3.
    I. Lyly Nyl, M. Wahid, M. Hafiz, Z. Habibah, S.H. Herman, M.R. Mahmood, Dielectric properties of PVDF-TrFE/PMMA:TiO2 multilayer dielectric thin films. Adv. Mater. Res. 576, 582–585 (2012)CrossRefGoogle Scholar
  4. 4.
    T.G. Mofokeng, A.S. Luyt, V.P. Pavlović, V.B. Pavlović, D. Dudić, B. Vlahović, V. Djoković, Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. J. Appl. Phys. 115(8), 084109 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Sharma, G. Madras, S. Bose, Anomalous structural relaxations in PVDF rich blends with PMMA in the presence of surface functionalized CNTs. Phys. Chem. Chem. Phys. 16(42), 23421 (2014)CrossRefGoogle Scholar
  6. 6.
    H. Song, H. Jiang, T. Liu, X. Liu, G. Meng, Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+1 (A = Li, Na, and K). Mater. Res. Bull. 42, 334 (2007)CrossRefGoogle Scholar
  7. 7.
    H.N. Yoshimura, A.L. Molisani, C. Fredericci, K.S. de Oliveira, A.C. Weber, A.L. Martins, Synthesis of potassium titanate fibers for friction materials. Mater. Sci. Forum 591, 755 (2008)CrossRefGoogle Scholar
  8. 8.
    D. Yu, J. Wu, L. Zhou, D. Xie, S. Wu, The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend. Compos. Sci. Technol. 60(4), 499 (2000)CrossRefGoogle Scholar
  9. 9.
    E. Dhanumalayan, A.M. Trimukhe, R.R. Deshmukh, G.M. Joshi, Disparity in hydrophobic to hydrophilic nature of polymer blend modified by K2Ti6O13 as a function of air plasma treatment. Prog. Org. Coat. 111, 371–380 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Sharma, G. Madras, S. Bose, Shear induced crystallization in different polymorphic forms of PVDF induced by surface functionalized MWNTs in PVDF/PMMA blends. Phys. Chem. Chem. Phys. 16, 16492 (2014)CrossRefGoogle Scholar
  11. 11.
    Q. Wang, Q. Guo, B. Li, Low temperature synthesis and characterization of substitutional Na-modified K2Ti6O13 nanobelts with improved photocatalytic activity under UV irradiation. RSC Adv. 5(81), 66086 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Abdelaziz, Investigations on optical and dielectric properties of PVDF/PMMA blend doped with mixed samarium and nickel chlorides. J. Mater. Sci.: Mater. Electron. 24(8), 2727 (2013)Google Scholar
  13. 13.
    M. Ramanathan, S.B. Darling, Characterization of Polymer Blends: Miscibility, Morphology, and Interfaces. (Wiley, New York, 2015)Google Scholar
  14. 14.
    M. Sharma, G. Madras, S. Bose, Size dependent structural relaxations and dielectric properties induced by surface functionalized MWNTs in poly (vinylidene fluoride)/poly (methyl methacrylate) blends. Phys. Chem. Chem. Phys. 16(6), 2693 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Sharma, G. Madras, S. Bose, Cooperativity and structural relaxations in PVDF/PMMA blends in the presence of MWNTs: an assessment through SAXS and dielectric spectroscopy. Macromolecules 47(4), 1392–1402 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Zhao, S. Chen, J. Zhang, W. Zhang, X. Wang, Crystallization of PVDF in the PVDF/PMMA blends precipitated from their non-solvents: special “orientation” behavior, morphology, and thermal properties. J. Cryst. Growth 328(1), 74–80 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Mohamadi, Preparation and characterization of PVDF/PMMA/graphene polymer blend nanocomposites by using ATR-FTIR technique. Mater. Sci. Eng. Technol. (2012). Google Scholar
  18. 18.
    R.B. Prime, H.E. Bair, S. Vyazovkin, P.K. Gallagher, A. Riga, Thermogravimetric analysis (TGA). Therm. Anal. Polym. 1, 241–317 (2009)CrossRefGoogle Scholar
  19. 19.
    J.G. Lee, S.H. Kim, H.C. Kang, S.H. Park, Effect of TiO2 on PVDF/PMMA composite films prepared by thermal casting. Macromol. Res. 21(4), 349–355 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Siddiqui, V. Chandel, M. Shariq, A. Azam, Dielectric and spectroscopic analysis of cobalt doped potassium hexatitanate (K2Ti6O13) ceramics. Mater. Sci. 31(4), 555–560 (2013)Google Scholar
  21. 21.
    T.A. Abdel-Baset, A. Hassen, Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film. Physica B 499, 24–28 (2016)CrossRefGoogle Scholar
  22. 22.
    E. Tuncer, Signs of low frequency dispersions in disordered binary dielectric mixtures (fifty–fifty). J. Phys. D 37(3), 334 (2004)CrossRefGoogle Scholar
  23. 23.
    G. Peng, X. Zhao, Z. Zhan, S. Ci, Q. Wang, Y. Liang, M. Zhao, New crystal structure and discharge efficiency of poly (vinylidene fluoride-hexafluoropropylene)/poly (methyl methacrylate) blend film. RSC Adv. 4(32), 16849 (2014)CrossRefGoogle Scholar
  24. 24.
    S.H. Xiaobing, L. Zhang, Y.A. Xiqiao, Z.Y. Cheng, Dielectric composites with a high and temperature-independent dielectric constant. J. Adv. Ceram. 1(4), 310 (2015). Google Scholar
  25. 25.
    Z. Ahmad, Polymer Dielectric Materials in Dielectric Material (InTech, Rijeka, 2012)Google Scholar
  26. 26.
    H. Saito, B. Stühn, Dielectric study of the crystal-amorphous interphase in poly (vinylidene fluoride)/poly (methyl methacrylate) blends. Polymer 35(3), 475–479 (1994)CrossRefGoogle Scholar
  27. 27.
    J. Mijovic, J.W. Sy, T.K. Kwei, (1997) Reorientational dynamics of dipoles in poly (vinylidene fluoride)/poly (methyl methacrylate) (PVDF/PMMA) blends by dielectric spectroscopy. Macromolecules 30(10), 3042CrossRefGoogle Scholar
  28. 28.
    D. Yang, H. Xu, W. Yu, J. Wang, X. Gong, Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly (vinylidene fluoride)(PVDF)/poly (methyl methacrylate)(PMMA) blend. J. Mater. Sci.: Mater. Electron. 28, 13006 (2017)Google Scholar
  29. 29.
    A.G. Vassilikou-Dova, Kalogeras, Thermal Analysis of Polymers: Fundamentals and Applications (Wiley, New York, 2009)Google Scholar
  30. 30.
    N. Tsutsumi, Y. Ueda, T. Kiyotsukuri, A.S. DeReggi, G.T. Davis, Thermal stability of internal electric field and polarization distribution in blend of polyvinylidene fluoride and polymethylmethacrylate. J. Appl. Phys. 74, 3366 (1993)CrossRefGoogle Scholar
  31. 31.
    J.W. Sy, J. Mijovic, Reorientational dynamics of poly (vinylidene fluoride)/poly (methyl methacrylate) blends by broad-band dielectric relaxation spectroscopy. Macromolecules 33(3), 933–946 (2000)CrossRefGoogle Scholar
  32. 32.
    M. Sharma, K. Sharma, S. Bose, Segmental relaxations and crystallization-induced phase separation in PVDF/PMMA blends in the presence of surface-functionalized multiwall carbon nanotubes. J. Phys. Chem. B. 117(28), 8589 (2013)CrossRefGoogle Scholar
  33. 33.
    M. Sharma, G. Madras, S. Bose, Unusual fragility and cooperativity in glass-forming and crystalline PVDF/PMMA blends in the presence of multiwall carbon nanotubes. Macromolecules 48(8), 2740 (2015)CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, M. Zuo, Y. Song, X. Yan, Q. Zheng, Dynamic rheology and dielectric relaxation of poly (vinylidene fluoride)/poly (methyl methacrylate) blends. Compos. Sci. Technol. 106, 39 (2015)CrossRefGoogle Scholar
  35. 35.
    Y. Cui, X. Wang, Q. Chi, J. Dong, T. Ma, C. Zhang, Q. Lei, Sandwich structured BT-Fe3O4/PVDF composites with excellent dielectric properties and energy density. J. Mater. Sci.: Mater. Electron. 1, 7 (2017)Google Scholar
  36. 36.
    R.R. De Oliveira, D.A. Albuquerque, T.G. Cruz, F.M. Yamaji, F.L. Leite, Atomic Force Microscopy-Imaging, Measuring and Manipulating Surfaces at the Atomic Scale (InTech, Rijeka, 2012)Google Scholar
  37. 37.
    W. Li, L. Jiang, X. Zhang, Y. Shen, C.W. Nan, High-energy-density dielectric films based on polyvinylidene fluoride and aromatic polythiourea for capacitors. J. Mater. Chem. A 2(38), 15803 (2014)CrossRefGoogle Scholar
  38. 38.
    F.A. Mir, Structural, morphological and ac conductivity study of PrFe0.5Ni0.5O3 thin film. Microelectron. Eng. 122, 59 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polymer Nanocomposite Laboratory, Center for Crystal GrowthVITVelloreIndia

Personalised recommendations