An Innovative Method for the Removal of Toxic SOx Molecules from Environment by TiO2/Stanene Nanocomposites: A First-Principles Study

  • Amirali Abbasi
  • Jaber Jahanbin Sardroodi


Based on the density functional theory calculations, we explored the sensing capabilities and electronic structures of TiO2/Stanene heterostructures as novel and highly efficient materials for detection of toxic SOx molecules in the environment. Studied gas molecules were positioned at different sites and orientations towards the nanocomposite, and the adsorption process was examined by the help of the most stable structures. We found that gas molecules are chemically adsorbed on the TiO2/Stanene heterostructures. The calculations of the adsorption energy indicate that the fivefold coordinated titanium sites of the TiO2/Stanene are the most stable sites for the adsorption of SOx molecules. Several active sites of the gas molecules were tested to be chemisorbed to the titanium atoms. The adsorption of gas molecules is an exothermic process, and this adsorption on the pristine nanocomposite is more favorable in energy than that on the nitrogen-doped nanocomposite. The effects of van der Waals interactions were taken into account, indicating the increase in the adsorption energy values for the most sable configurations. Mulliken charge analysis reveals that SOx molecules show acceptor characteristics, as evidenced by the accumulation of electronic charges on the adsorbed molecules.


Density functional theory TiO2/Stanene Heterostructure SOx, charge density difference 



This work has been supported by Azarbaijan Shahid Madani University (Grant No: 96/235).


  1. 1.
    D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Liu, Y. Du, Y. Deng, P. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Guo, K. Xu, C. Wu, J. Zhao, Y. Xie, Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 44, 637–646 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Kong, Q. Liu, C. Zhang, Z. Peng, Q. Chen, Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 46, 2127–2157 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Mannix, X. Zhou, B. Kiraly, J. Wood, D. Alducin, B. Myers, X. Liu, B. Fisher, U. Santiago, J. Guest, M. Yacaman, A. Ponce, A. Oganov, M. Hersam, N. Guisinger, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Jing, X. Zhang, Z. Zhou, Phosphorene: what can we know from computations? WIREs Comput Mol. Sci. 6, 5–19 (2016)CrossRefGoogle Scholar
  8. 8.
    Q. Tang, Z. Zhou, Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations. WIREs Comput. Mol. Sci. 5, 360–379 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem. 54, 3112–3115 (2015)CrossRefGoogle Scholar
  10. 10.
    V. Özçelik, O. Aktürk, E. Durgun, S. Ciraci, Prediction of a two-dimensional crystalline structure of nitrogen atoms. Phys. Rev. B 92, 125420–125427 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)CrossRefGoogle Scholar
  12. 12.
    F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. Zhang, J. Jia, Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng, Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Zhang, W. Zhou, Y. Ma, J. Ji, B. Cai, S.A. Yang, Z. Zhu, Z. Chen, H. Zeng, Antimonene oxides: emerging tunable direct bandgap semiconductor and novel topological insulator. Nano Lett. 17, 3434–3440 (2017)CrossRefGoogle Scholar
  15. 15.
    O. Leenaerts, B. Partoens, F. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416–125421 (2008)CrossRefGoogle Scholar
  16. 16.
    F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRefGoogle Scholar
  17. 17.
    L. Kou, A. Du, C. Chen, T. Frauenheim, Strain engineering of selective chemical adsorption on monolayer MoS2. Nanoscale 6, 5156–5161 (2014)CrossRefGoogle Scholar
  18. 18.
    F. Perkins, A. Friedman, E. Cobas, P. Campbell, G. Jernigan, B. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013)CrossRefGoogle Scholar
  19. 19.
    K. Lee, R. Gatensby, N. McEvoy, T. Hallam, G. Duesberg, High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25, 6699–6702 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Crowther, A. Ghassaei, N. Jung, L.E. Brus, Strong charge-transfer doping of 1 to 10 layer graphene by NO2. ACS Nano 6, 1865–1875 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Jing, X. Zhang, D.H. Wu, X.D. Zhao, Z.Z. Hou, High carrier mobility and pronounced light absorption in methyl-terminated germanene: insights from first-principles computations. J. Phys. Chem. Lett. 6, 4252 (2015)CrossRefGoogle Scholar
  22. 22.
    R.W. Zhang, C.W. Zhang, W.X. Ji, S.S. Li, S.J. Hu, Ethynyl-functionalized stanene film: a promising candidate as large-gap Quantum Spin Hall insulator. New J. Phys. 17, 083036 (2015)CrossRefGoogle Scholar
  23. 23.
    F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, J.F. Jia, Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Modarresi, A. Kakoee, Y. Mogulkoc, M.R. Roknabadi, Effect of external strain on electronic structure of stanene. Comput. Mater. Sci. 101, 164–167 (2015)CrossRefGoogle Scholar
  25. 25.
    S.S. Li, C.W. Zhang, Tunable electronic structures and magnetic properties in two-dimensional stanene with hydrogenation. Mater. Chem. Phys. 173, 246–254 (2016)CrossRefGoogle Scholar
  26. 26.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Rachel, M. Ezawa, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene. Phys. Rev. B 89, 195303 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)CrossRefGoogle Scholar
  29. 29.
    M. Fernandez-Garcia, A. Martinez-Arias, J.C. Hanson, J.A. Rodriguez, Nanostructured oxides in chemistry: characterization and properties. J. Chem. Rev. 104, 4063–4104 (2004)CrossRefGoogle Scholar
  30. 30.
    A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. J. Chem. Rev. 95(3), 735 (1995)CrossRefGoogle Scholar
  31. 31.
    K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water. Nature. 440(7082), 295 (2006)CrossRefGoogle Scholar
  32. 32.
    M. Fujihira, Y. Satoh, T. Osa, Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 293, 206–208 (1981)CrossRefGoogle Scholar
  33. 33.
    G.J. Shao, Electronic structures of manganese-doped rutile TiO2 from first principles. Phys. Chem. C 112, 18677–18685 (2008)CrossRefGoogle Scholar
  34. 34.
    M. Anpo, M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 216, 505–516 (2003)CrossRefGoogle Scholar
  35. 35.
    L.A. Errico, M. Renteria, M. Weissmann, Theoretical study of magnetism in transition-metal-doped TiO2 and TiO2−δ. Phys. Rev. B 72, 184425 (2005)CrossRefGoogle Scholar
  36. 36.
    S. Sakthivel, M. Janczarek, H.J. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. Phys. Chem. B 108, 19384–19387 (2004)CrossRefGoogle Scholar
  37. 37.
    O. Diwald, T.L. Thompshon, T. Zubkov, E.G. Goralski, S.D. Walck, J. T. Yates, Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light. J. Phys. Chem. B 108, 6004–6008 (2004)CrossRefGoogle Scholar
  38. 38.
    M. Miyauchi, A. Ikezawa, H. Tobimatsu, H. Irie, K. Hashimoto, Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys. Chem. Chem. Phys. 6, 865–870 (2004)CrossRefGoogle Scholar
  39. 39.
    N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5, 7–19 (1991)CrossRefGoogle Scholar
  40. 40.
    G. Sberveglieri, Recent developments in semiconducting thin-film gas sensors. Sens. Actuators B 23, 103–109 (1995)CrossRefGoogle Scholar
  41. 41.
    A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld, K.S. Goto, Solid-state gas sensors: a review. J. Electrochem. Soc. 139, 3690 – 3704 (1992)CrossRefGoogle Scholar
  42. 42.
    K.J. Choi, H.W. Jang, One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10, 4083–4099 (2010)CrossRefGoogle Scholar
  43. 43.
    G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)CrossRefGoogle Scholar
  44. 44.
    N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B 121, 18–35 (2007)CrossRefGoogle Scholar
  45. 45.
    R. Moos, K. Sahner, M. Fleischer, U. Guth, N. Barsan, U. Weimar, Solid state gas sensor research in Germany–a status report. Sensors 9, 4323–4365 (2009)CrossRefGoogle Scholar
  46. 46.
    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)CrossRefGoogle Scholar
  47. 47.
    M. Batzill, Surface science studies of gas sensing materials: SnO2. Sensors 6, 1345–1366 (2006)CrossRefGoogle Scholar
  48. 48.
    A. Abbasi, J.J. Sardroodi, Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: Insights from density functional theory calculations. Comput. Theor. Chem. 1095, 15–28 (2016)CrossRefGoogle Scholar
  49. 49.
    A. Abbasi, J.J. Sardroodi, N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations. Environ. Sci. Nano 3, 1153–1164 (2016)CrossRefGoogle Scholar
  50. 50.
    A. Abbasi, J.J. Sardroodi, A novel strategy for SOx removal by N-doped TiO2/WSe2 nanocomposite as a highly efficient molecule sensor investigated by van der Waals corrected DFT. Comput. Theor. Chem. 1114, 8–19 (2017)CrossRefGoogle Scholar
  51. 51.
    A. Abbasi, J.J. Sardroodi, Prediction of a highly sensitive molecule sensor for SOx detection based on TiO2/MoS2 nanocomposites: a DFT study. J. Sulfur Chem. 38(1), 52–68 (2017)CrossRefGoogle Scholar
  52. 52.
    A. Abbasi, J.J. Sardroodi, An innovative gas sensor system designed from a sensitive nanostructured ZnO for the selective detection of SOx molecules: a density functional theory study. New J. Chem. 41, 12569–12580 (2017)CrossRefGoogle Scholar
  53. 53.
    A. Abbasi, J.J. Sardroodi, Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: a comparison between undoped and N-doped nanocomposites. J. Nanostruct. Chem. 6, 309–327 (2016)CrossRefGoogle Scholar
  54. 54.
    A. Abbasi, J.J. Sardroodi, Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: applications to gas sensor devices. Appl. Surf. Sci. 436, 27–41 (2018)CrossRefGoogle Scholar
  55. 55.
    A. Abbasi, J.J. Sardroodi, Adsorption of toxic SOx molecules on heterostructured TiO2/ZnO nanocomposites for gas sensing applications: a DFT study. Adsorption 24, 29–41 (2018)CrossRefGoogle Scholar
  56. 56.
    A. Abbasi, J.J. Sardroodi, A.R. Ebrahimzadeh, M. Yaghoobi, Theoretical study of the structural and electronic properties of novel stanene-based buckled nanotubes and their adsorption behaviors. Appl. Surf. Sci. 435, 733–742 (2018)CrossRefGoogle Scholar
  57. 57.
    A. Abbasi, J.J. Sardroodi, Molecular design of O3 and NO2 sensor devices based on a novel heterostructured N-doped TiO2/ZnO nanocomposite: a van der Waals corrected DFT study. J Nanostruct. Chem. 7, 345–358 (2017)CrossRefGoogle Scholar
  58. 58.
    A. Abbasi, J.J. Sardroodi, Density functional theory investigation of the interactions between the buckled stanene nanosheet and XO2 gases (X = N, S, C). Comput. Theor. Chem. 1125, 15–28 (2018)CrossRefGoogle Scholar
  59. 59.
    Z. Li, D. Ding, Q. Liu, C. Ning, X. Wang, Ni-doped TiO2 nanotubes for wide-range hydrogen sensing. Nanoscale Res. Lett. 9, 1–9 (2014)CrossRefGoogle Scholar
  60. 60.
    X. Zou et al., Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 13, 3287–3292 (2013)CrossRefGoogle Scholar
  61. 61.
    G. Chen et al., High-energy faceted SnO2-coated TiO2 nan-belt heterostructure for near-ambient temperature-responsive ethanol sensor. ACS Appl. Mater. Interfaces 7, 24950–24956 (2015)CrossRefGoogle Scholar
  62. 62.
    M. Madani, K. Omri, N. Fattah, A. Ghorbal, X. Portier, Influence of silica ratio on structural and optical properties of SiO2/TiO2 nanocomposites prepared by simple solid-phase reaction. J. Mater. Sci.: Mater. Electron. 28, 12977–12983 (2017)Google Scholar
  63. 63.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)CrossRefGoogle Scholar
  64. 64.
    W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)CrossRefGoogle Scholar
  65. 65.
    The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site
  66. 66.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)CrossRefGoogle Scholar
  67. 67.
    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)CrossRefGoogle Scholar
  68. 68.
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  69. 69.
    M. Modarresi, A. Kakoee, Y. Mogulkoc, M. Roknabadi, Effect of external strain on electronic structure of stanene. Comput. Mater. Sci. 101, 164–167 (2015)CrossRefGoogle Scholar
  70. 70.
    S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11, 640–652 (2015)CrossRefGoogle Scholar
  71. 71.
  72. 72.
    R.W.G. Wyckoff, Crystal Structures, 2nd edn. (Interscience Publishers, New York, 1963)Google Scholar
  73. 73.
    Y. Lei, H. Liu, W. Xiao, First principles study of the size effect of TiO2 anatase nanoparticles in dye-sensitized solar cell. Modell. Simul. Mater. Sci. Eng. 18, 025004 (2010)CrossRefGoogle Scholar
  74. 74.
    J. Liu, Q. Liu, P. Fang, C. Pan, W. Xiao, First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles. J. Appl. Surf. Sci. 258, 8312–8318 (2012)CrossRefGoogle Scholar
  75. 75.
    M.D. Piane, M. Corno, P. Ugliengo, Does dispersion dominate over H-Bonds in drug–surface interactions? The case of silica-based materials as excipients and drug-delivery agents. J. Chem. Theor. Comput. 9(5), 2404–2415 (2013)CrossRefGoogle Scholar
  76. 76.
    M.D. Piane, S. Vaccari, M. Corno, P. Ugliengo, Silica-based materials as drug adsorbents: first principle investigation on the role of water microsolvation on ibuprofen adsorption. J. Phys. Chem. A 118(31), 5801–5807 (2014)CrossRefGoogle Scholar
  77. 77.
    N. Tasinato, D. Moro, P. Stoppa, C.A. Pietropolli, P. Toninello, S. Giorgianni, Adsorption of F2Cdbnd CFCl on TiO2 nano-powder: structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations. Appl. Surf. Sci. 353, 986–994 (2015)CrossRefGoogle Scholar
  78. 78.
    A. Abbasi, J.J. Sardroodi, Improving the adsorption of sulfur trioxide on TiO2 anatase nanoparticles by N-doping: a DFT study. J. Theor. Comput. Chem. 14(4), 1550025 (2015)CrossRefGoogle Scholar
  79. 79.
    X. Chen, C. Tan, Q. Yang, R. Meng, Q. Liang, M. Cai, S. Zhang, J. Jiang, Ab initio study of the adsorption of small molecules on stanene. J. Phys. Chem. C 120(26), 13987–13994 (2016)CrossRefGoogle Scholar
  80. 80.
    P. Garg, I. Choudhuri, B. Pathak, Stanene based gas sensors: effect of spin–orbit coupling. Phys. Chem. Chem. Phys. 19, 31325–31334 (2017)CrossRefGoogle Scholar
  81. 81.
    J. Prasongkit, R.G. Amorim, S. Chakraborty, R. Ahuja, R.H. Scheicher, V. Amornkitbamrung, Highly sensitive and selective gas detection based on silicene. J. Phys. Chem. C 119, 16934–16940. (2015)CrossRefGoogle Scholar
  82. 82.
    Z. Lou et al., A class of hierarchical nanostructures: ZnO surface functionalized TiO2 with enhanced sensing properties. RSC Adv. 3, 3131–3136 (2013)CrossRefGoogle Scholar
  83. 83.
    C.L. Zhu et al., Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. ACS Appl. Mater. Interfaces 4, 665–671 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Simulation laboratory (MSL)Azarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Computational Nanomaterials Research Group (CNRG)Azarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Department of Chemistry, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations