Advertisement

Facile Solvothermal Synthesis of Novel CuCo2S4/g-C3N4 Nanocomposites for Visible-Light Photocatalytic Applications

  • S. Hariganesh
  • S. Vadivel
  • D. Maruthamani
  • M. Kumaravel
  • Aziz Habibi-Yangjeh
Article
  • 175 Downloads

Abstract

In this work, we synthesized a series of CuCo2S4/g-C3N4 (CSC) nanocomposites by a facile solvothermal approach using D-penicillamine as sulphur source. The phase structure, morphology, chemical composition, and optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV–vis DRS). The photocatalytic activities of the synthesized CSC nanocomposites were evaluated using degradation of methylene blue (MB) dye under visible-light irradiation. The light absorption capacity and photocatalytic activity of CuCo2S4 were enhanced by the successful incorporation with g-C3N4. The nanocomposite with 30% loading of g-C3N4 in CuCo2S4 exhibited maximum degradation efficiency compared to the pure CuCo2S4 towards the degradation of MB dye under the light irradiation. A possible mechanism for enhanced photocatalytic activity towards the pollutant degradation by the nanocomposites was proposed.

Keywords

G-C3N4 CuCo2S4 D-penicillamine Photocatalyst Nanocomposite 

Notes

Acknowledgements

This work was financially supported by DST- Science and Engineering Research Board (SERB) India, under “Early Career Research Award Scheme” (ECR/2016/001535/CS) to Dr. S. Vadivel.

References

  1. 1.
    X. Zhang, S. Li, S. Hu, J. Chen, W. Jiang, J. Zhang, L. Ji, ,L. Cai, Y. Wang, W. Song, J. Liu, Mater. Lett. 185, 50 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, G. Zhu, M. Hojamberdiev, J. Gao, J. Hao, J. Zhou, P. Liu, Appl. Surf. Sci. 371, 231 (2016)CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, B. Xu, S. Yuan, M. Zhang, T. Ohno, Catal. Today 284, 27 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Chen, W. Mei, Q. Huang, N. Chen, C. Lu, H. Zhu, J. Chen, W. Hou, J. Alloy. Compd. 688, 225 (2016)CrossRefGoogle Scholar
  5. 5.
    D. Maruthamani, D. Divakar, M. Kumaravel, J. Ind. Eng. Chem. 30, 33 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, M. Shanthi, Mat. Sci. Semicon. Proc. 22, 83 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Li, X. Hu, C. Liu, C. Tang, X. Wang, S. Luo, J. Mol. Catal. A-Chem. 425, 124 (2016)CrossRefGoogle Scholar
  8. 8.
    S. Yang, C. Chen, L. Liu, L. Zhu, X. Xu, Mater. Res. Bull. 92, 29 (2017)CrossRefGoogle Scholar
  9. 9.
    C. Yu, K. Wang, P. Yang, S. Yang, C. Lu, Y. Song, S. Dong, J. Sun, J. Sun, Appl. Surf. Sci. 420, 233 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Fakhri, A.R. Mahjoub, A.H. Cheshme Khavar, Appl. Surf. Sci. 318, 65 (2014)CrossRefGoogle Scholar
  11. 11.
    T.Y. Ho, L.Y. Chen, Energy Procedia 61, 2050 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Ye, T. Chen, Q. Chen, W. Chen, Z. Yu, S. Xu, J. Mater. Chem. A 4, 13194 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Vadivel, D. Maruthamani, B. Paul, S.S. Dhar, A. Habibi-Yangjeh, S. Balachandran, B. Saravanakumar, A. Selvakumar, K. Selvam, RSC Adv. 6, 74177 (2016)CrossRefGoogle Scholar
  14. 14.
    R.H. Fath, S.J. Hoseini, New J. Chem. 41, 3392 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, J. Mater. Sci.: Mater. Electron. (2017). doi. https://doi.org/10.1007/s10854-017-8166-x Google Scholar
  16. 16.
    Q. Liu, Y. Guo, Z. Chen, Z. Zhang, X. Fang, Appl. Catal. B-Environ. 183, 231 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Vadivel, D. Maruthamani, A. Habibi-Yangjeh, B. Paul, S.S. Dhar, K. Selvam, J. Colloid Interf. Sci. 480, 126 (2016)CrossRefGoogle Scholar
  18. 18.
    X. Fang, J. Song, H. Shi, S. Kang, Y. Li, G. Sun, L. Cui, Int. J. Hydrogen Energ. 42, 5741 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Akhundi, A. Habibi-Yangjeh, J. Colloid Interf. Sci. 504, 697 (2017)CrossRefGoogle Scholar
  20. 20.
    K. Vignesh, M. Kang, Mater. Sci. Eng. B- Adv. 199, 30 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Tang, Y. Ge, J.F. Shen, M. Ye, Chem. Commun. 52, 1509 (2016)CrossRefGoogle Scholar
  22. 22.
    G. Zhang, J. Zhang, M. Zhang, X. Wang, J. Mater. Chem. 22, 8083 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Sun, Y. Yuan, L. Qiu, X. Jiang, A. Xie, Y. Shen, J. Zhu, Dalton Trans. 41, 6756 (2012)CrossRefGoogle Scholar
  24. 24.
    G. Liao, S. Chen, X. Quan, H. Yu, H. Zhao, J. Mater. Chem. 22, 2721 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Lu, Z. Pei, S. Weng, W. Feng, Z. Fang, Z. Zheng, M. Huang, P. Liu, Phys. Chem. Chem. Phys. 16, 21280 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Shen, J. Tang, P. Dong, Z. Zhang, J. Ji, R. Baines, M. Ye, RSC Adv. 6, 13456 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Tonda, S. Kumar, Y. Gawli, M. Bhardwaj, S. Ogale, Int. J. Hydrogen Energ. 42, 5971 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, J. Colloid Interf. Sci. 480, 218 (2016)CrossRefGoogle Scholar
  29. 29.
    M.A. Butler, D.S. Ginley, J. Electrochem. Soc. 125, 228 (1978)CrossRefGoogle Scholar
  30. 30.
    A. Habibi-Yangjeh, M. Shekofteh-Gohari, Sep. Purif. Technol. 184, 334 (2017)CrossRefGoogle Scholar
  31. 31.
    W. Zhang, X. Xiao, L. Zheng, C. Wan, Appl. Surf. Sci. 358, 468 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Fu, Y. Tian, B. Chang, F. Xi, X. Dong, J. Mater. Chem. 22, 21159 (2012)CrossRefGoogle Scholar
  33. 33.
    T. Xian, H. Yang, L.J. Di, J.F. Dai, J. Alloy. Compd. 622, 1098 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Hariganesh
    • 1
  • S. Vadivel
    • 1
  • D. Maruthamani
    • 1
  • M. Kumaravel
    • 1
  • Aziz Habibi-Yangjeh
    • 2
  1. 1.Department of ChemistryPSG College of TechnologyCoimbatoreIndia
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations