Synthesis and Structural Characterization of Polymer-Based Cobalt Ferrite Nanocomposite with Core–Shell Structure

  • R. Jayalakshmi
  • J. Jeyanthi


Polymer hybrids have become a major area of research and development owing to the remarkable properties and multifunctional behaviour deriving from their nanocomposite/nanohybrid structure. In this class, magnetic polymer nanocomposite are of special interest because of the combination of excellent magnetic properties, high specific area, surface active sites, high chemical stability and good biocompatibility. The present communication primarily concentrates on the investigation of structural characterization of alginate–cobalt ferrite nanocomposite (CoFe2O4–ANa NC) prepared by ex situ polymerization method. The structural and morphological properties of CoFe2O4–ANa NC were analysed using X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering. The specific surface area of the nanocomposite was analysed using BET surface area analysis. The functional group and the thermal stability were examined using FTIR and TGA/DTA respectively. The characterization results have pointed out the successful role of sodium alginate in stabilizing cobalt ferrite nanoparticles (CoFe2O4 NP). The SEM and TEM images revealed the well interspersed state of cobalt ferrite with sodium alginate. It is obvious to note the increased size and the specific surface area for CoFe2O4 nanocomposite.


Polymer nanocomposite Alginate–cobalt ferrite nanocomposite BET TEM SEM Core–shell structure 



We would like to show our gratitude to TEQIP II CoE-ES for providing us all the facilities and equipment required for carrying out our research.


  1. 1.
    M. Abu-Abdeen, A.S. Ayesh, A.A. Al Jaafari, Physical characterizations of semi-conducting conjugated polymer-CNTs nanocomposite. J. Polym. Res. 19, 9839 (2012)CrossRefGoogle Scholar
  2. 2.
    P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposite: synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)CrossRefGoogle Scholar
  3. 3.
    Y.H. Choa, J.K. Yang, B.H. Kim, Y.K. Jeong, J.S. Lee, T. Nakayama, Preparation and characterization of metal: ceramic nanoporous nanocomposite powders. J. Magn. Magn. Mater. 266(1–2), 12–19 (2003)CrossRefGoogle Scholar
  4. 4.
    D. Mishra, K.K. Senapati, C. Borgohain, A. Perumal, (2012) CoFe2O4–Fe3O4 magnetic nanocomposites as photocatalyst for the degradation of methyl orange dye. J. Nanotechnol. 2012:6Google Scholar
  5. 5.
    J.H. Jung, J.H. Lee, S. Shinkai, Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. ChemSoc Rev. 40, 4464–4474 (2011)Google Scholar
  6. 6.
    M. Mohamed, A. El-Maghraby, M.A. EL-Latif, H. Farag, K. Kalaitzidou, Fe-Ni alloy/polyamide 6 nanocomposites: effect of nanocrystalline metal particles on the mechanical and physical properties of the polymer. J. Polym. Res. 20, 137 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.-W. Mai, Z.-Z. Yu, Polymer Nanocomposites (Woodhead Publishing Limited, Cambridge, 2006)CrossRefGoogle Scholar
  8. 8.
    I. Zaman, B. Manshoor, A. Khalid, S. Araby, From clay to graphene for polymer nanocomposites—a survey. J. Polym. Res. 21, 429 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Rahimi-Razin, M. Salami-Kalajahi, V. Haddadi-Asl, H. Roghani-Mamaqani, Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. J. Polym. Res. 19, 9954 (2012)CrossRefGoogle Scholar
  10. 10.
    S.-M. Lai, W.-C. Chen, W.W. Zi, Effectiveness of a maleated compatibilizer on the tensile and tear properties of peroxide-cured metallocene polyethylene/clay nanocomposites. J. Polym. Res. 18, 1033–1042 (2011)CrossRefGoogle Scholar
  11. 11.
    H. Roghani-Mamaqani, V. Haddadi-Asl, M. Salami-Kalajahi, In situ controlled radical polymerization: a review on synthesis ofwell-defined nanocomposites. Polym. Rev. 52, 142–188 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Salami-Kalajahi, V. Haddadi-Asl, S. Rahimi-Razin, F. Behboodi-Sadabad, M. Najafi, H. Roghani-Mamaqani, A study on theproperties of PMMA/silica nanocomposites prepared via RAFT polymerization. J. Polym. Res. 19, 9793 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Salami-Kalajahi, V. Haddadi-Asl, S. Rahimi-Razin, F. Behboodi-Sadabad, H. Roghani-Mamaqani, M. Hemmati, Investigating the effect of pristine and modified silica nanoparticles on thekinetics of methyl methacrylate polymerization. Chem. Eng. J. 174, 368–375 (2011)CrossRefGoogle Scholar
  14. 14.
    H. Roghani-Mamaqani, V. Haddadi-Asl, M. Najafi, M. Salami-Kalajahi, Synthesis and characterization of clay dispersed polystyrene nanocomposite via atom transfer radical polymerization. Polym. Compos. 31, 1829–1837 (2010)CrossRefGoogle Scholar
  15. 15.
    L. Hatami, V. Haddadi-Asl, H. Roghani-Mamaqani, L. Ahmadian-Alam, M. Salami-Kalajahi, Synthesis and characterizationof poly(styrene-co-butyl acrylate)/clay nanocomposite latexes in mini emulsion by AGET ATRP. Polym. Compos. 32, 967–975 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Sun, H. Zeng, D.B. Robinson, S.P. Raoux, M. Rice, S.X. Wang, G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004)CrossRefGoogle Scholar
  17. 17.
    C.R. Vestal, Q. Song, Z.J. Zhang, Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. J. Phys. Chem. B 108(47), 18222–18227 (2004)CrossRefGoogle Scholar
  18. 18.
    R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Stabilization of individual carbon nanotubes in aqueoussolutions. Nano Lett. 2, 25–28 (2002)CrossRefGoogle Scholar
  19. 19.
    P.V. Finotelli, M.A. Morales, M.H. Rocha-Le-ao, E.M. Baggio-Saitovitch, A.M. Rossi, Magnetic studies of iron (III) nanoparticles in alginate polymer for drug delivery applications. Mater. Sci. Eng. C 24, 625–629 (2004)CrossRefGoogle Scholar
  20. 20.
    K.I. Draget, C. Taylor, Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll. 25, 251–256 (2011)CrossRefGoogle Scholar
  21. 21.
    L. Fuks, D. Filipiuk, M. Majdan, Transition metal complexes with alginate biosorbent. J. Mol. Struct. 792–793, 104–109 (2006)CrossRefGoogle Scholar
  22. 22.
    G.T. Grant, E.R. Morris, D.A. Rees, P.J.C. Smith, D. Thom, Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett. 32, 195–198 (1973)CrossRefGoogle Scholar
  23. 23.
    K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2006)CrossRefGoogle Scholar
  24. 24.
    Z. Liu, X. Li, Y. Leng, J. Lian, S. Liu, Z. Xiu, D. Huo, L. Ji-Guang, S. Xudong, Homogeneous precipitation synthesis and magnetic properties of cobalt ferrite nanoparticles. J. Nanomater. 2008, 921654 (2008)Google Scholar
  25. 25.
    K.K. Siong, Preparation, characterization and properties of core-shell cobalt ferrite/polycaprolactone nanomagnetic biomaterials. Sains Malaysiana 42(2), 167–173 (2018)Google Scholar
  26. 26.
    C.I. Coaliu, C. Matei, A. Ianculescu, I. Jitaru, D. Berger, Fe3O4 and CoFe2O4 nanoparticles stabilized in sodium alginate polymer. U.P.B Sci. Bull. Ser. B 71(4), 53 (2009)Google Scholar
  27. 27.
    B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1978), p. 102Google Scholar
  28. 28.
    L. Pan, D. Cao, P. Jing, J. Wang, Q. Liu, A novel method to fabricate CoFe2O4/SrFe12O19 composite ferrite nanofibers with enhanced exchange coupling effect. Nanoscale Res. Lett. 10, 131 (2015)CrossRefGoogle Scholar
  29. 29.
    P.M. Tamhankar, A.M. Kulkarni, S.C. Watawe, Functionalization of cobalt ferrite nanoparticles with alginate coating for biocompatible applications. Mater. Sci. Appl. 2, 1317–1321 (2011)Google Scholar
  30. 30.
    G.C.P. Leite, E.F. Chagas, R. Pereira, R.J. Prado, A.J. Terezo, M. Alzamora, E. Baggio-Saitovitch, Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J. Magn. Magn. Mater. 324, 2711–2716 (2012)CrossRefGoogle Scholar
  31. 31.
    F. Liu, S. Laurent, A. Roch, L.V. Elst, R.N. Muller, Size-controlled synthesis of CoFe2O4 nanoparticles potential contrast agent for MRI and investigation on their size-dependent magnetic properties. J. Nanomater. 2013(1), 1–9 (2013)Google Scholar
  32. 32.
    K. Vasundhara, S.N. Achary, S.K. Deshpande, P.D. Babu, S.S. Meena, A.K. Tyagi, Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J. Appl. Phys. 113(19), 194101–194110 (2013)CrossRefGoogle Scholar
  33. 33.
    R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955)CrossRefGoogle Scholar
  34. 34.
    W.B. White, De Angelis, Spectrochim. Acta A 23, 985 (1967)CrossRefGoogle Scholar
  35. 35.
    G. Allaedini, S.M. Tasirin, P. Aminayi, Magnetic properties of cobalt ferrite synthesized by hydrothermal method. Int. Nano Lett. 5, 183–186 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringGovernment College of TechnologyCoimbatoreIndia

Personalised recommendations