Preparation of Iron Sulfide Nanomaterials from Iron(II) Thiosemicarbazone Complexes and Their Application in Photodegradation of Methylene Blue

  • Jagruti S. Suroshe
  • Sixberth Mlowe
  • Shivram S. Garje
  • Neerish Revaprasadu


Iron sulfide nanomaterials were prepared by the solvothermal decomposition of two single source precursors i.e. [FeCl2(cinnamtscz)2] (1) (cinnamtscz = cinnamaldehyde thiosemicarbazone) and [FeCl2(benztscz)2] (2) (benztscz = benzaldehyde thiosemicarbazone) at different temperatures of 230 and 300 °C in the presence of oleylamine. Powder X-ray diffractometry shows the formation of the pyrrhotite phase at both reaction temperatures. The solvothermal decomposition of [FeCl2(cinnamtscz)2] and [FeCl2(benztscz)2] at 230 °C produced iron sulfide nanoparticles in the form of spheres. When the temperature was increased to 300 °C, particles in the form of hexagons and nanorods were obtained. Furthermore, the photocatalytic activities of all the four iron sulfide nanomaterials were tested for the degradation of methylene blue under visible light irradiation. Amongst all the materials, nanospheres of iron sulfide obtained by the solvothermal decomposition of [FeCl2(benztscz)2] at 230 °C showed the highest photocatalytic efficiency (88.40%).


Iron sulfide Single source precursor Oleylamine Methylene blue Photodegradation 



The authors are grateful to the National Research Foundation (NRF), South Africa and the India–Brazil–South Africa (IBSA) program for financial support. The authors also thank the Microscopy and Microanalysis Unit (MMU) of the University of KwaZulu-Natal, South Africa for transmission electron microscopy imaging. The authors also acknowledge Department of Physics, University of Mumbai for surface area measurements.


  1. 1.
    H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S.H. Sun, Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395–398 (2002)CrossRefGoogle Scholar
  2. 2.
    J.W.M. Bulte, T. Douglas, B. Witwer, S.C. Zhang, E. Strable, B.K. Lewis, H. Zywicke, B. Miller, P.V. Golderen, B.M. Moskowitz, L.D. Duncan, J.A. Frank, Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141–1147 (2001)CrossRefGoogle Scholar
  3. 3.
    J.M. Nam, C.S. Thaxton, C.A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003)CrossRefGoogle Scholar
  4. 4.
    A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, R. Felix, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001)CrossRefGoogle Scholar
  5. 5.
    F. Hu, L. Wei, Z. Zhou, Y. Ran, Z. Li, M. Gao, Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv. Mater. 18, 2553–2556 (2006)CrossRefGoogle Scholar
  6. 6.
    Z. Li, L. Wei, M. Gao, H. Lei, One pot reaction to synthesize biocompatible magnetic nanoparticles. Adv. Mater. 17, 1001–1005 (2005)CrossRefGoogle Scholar
  7. 7.
    Y.M. Huh, Y. Jun, H.T. Song, S. Kim, J. Choi, J.H. Lee, S. Yoon, K.S. Kim, J.S. Shin, J.S. Suh, J. Cheon, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 127, 12387–12391 (2005)CrossRefGoogle Scholar
  8. 8.
    C.N.R. Rao, K.P.R. Pisharody, Transition metal sulphides. Solid State Chem. 10, 207–270 (1976)CrossRefGoogle Scholar
  9. 9.
    J.C. Ward, The structure and properties of some iron sulphides. Rev. Pure. Appl. Chem. 20, 175–206 (1970)Google Scholar
  10. 10.
    D. Rickard, I.I.I.G.W. Luther, Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007)CrossRefGoogle Scholar
  11. 11.
    W. Han, M. Gao, Investigations on iron sulfide nanosheets prepared via a single-source precursor approach. Cryst. Growth Des. 8, 1023–1030 (2008)CrossRefGoogle Scholar
  12. 12.
    D.W. Wang, Q.H. Wang, T.M. Wang, Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method. CrystEngComm 12, 755–761 (2010)CrossRefGoogle Scholar
  13. 13.
    X. Chen, Z. Wang, X. Wang, J. Wan, J. Liu, Y. Qian, Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties. Inorg. Chem. 44, 951–954.h (2005)CrossRefGoogle Scholar
  14. 14.
    E.J. Kim, B. Batchel, Synthesis and characterization of pyrite (FeS2) using microwave irradiation. Mater. Res. Bull. 44, 1553–1558 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Nath, A. Choudhury, A. Kundu, C.N.R. Rao, Synthesis and characterization of magnetic iron sulfide nanowires. Adv. Mater. 15, 2098–2101 (2003)CrossRefGoogle Scholar
  16. 16.
    M.J. Height, S.E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, Ag-ZnO catalysts for UV-photodegradation of methylene blue. Appl. Catal. B 63, 305–312 (2006)CrossRefGoogle Scholar
  17. 17.
    R.B. Jiang, B.X. Li, C.H. Fang, J.F. Wang, Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 26, 5274–5309 (2014)CrossRefGoogle Scholar
  18. 18.
    K. Bubacz, J. Choina, D. Dolat, A.W. Morawski, Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2. Pol. J. of Environ. Stud. 19, 685–691 (2010)Google Scholar
  19. 19.
    P. Chandran, S. Netha, S.S. Khan, Effect of humic acid on photocatalytic activity of ZnO nanoparticles. J. Photochem. Photobiol. B 138, 155–159 (2014)CrossRefGoogle Scholar
  20. 20.
    G. Sangami, N. Dharmaraj, UV–visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles. Spectrochim. Acta A 97, 847–852 (2012)CrossRefGoogle Scholar
  21. 21.
    R.K. Upadhyay, M. Sharma, D.K. Singh, S.S. Amritphale, N. Chandra, Photo degradation of synthetic dyes using cadmium sulfide nanoparticles synthesized in the presence of different capping agents. Sep. Purif. Technol. 88, 39–45 (2012)CrossRefGoogle Scholar
  22. 22.
    N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, P. Vaziri, Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int. J. Mol. Sci. 13, 12242–12258 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Santos-Cruz, R.E. Nunez-Anita, S.A. Mayen-Hernandez, O. Martinez-Alvarez, L.S. Acosta-Torres, J.D.L. Fuente-Hernandez, E. Campos-Gonzalez, M. Vega-Gonzalez, L.S. Arenas-Arrocena, Colloidal synthesis of biocompatible iron disulphide nanocrystals. Artif. Cells Nanomed. Biotechnol. 45, 1–8 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Kaur, B. Singh, P. Singh, K. Singh, A. Thakur, M. Kumar, R. Bala, A. Kumar, Iron disulfide (FeS2): a promising material for removal of industrial pollutants. ChemistrySelect 2, 2166–2173 (2017)CrossRefGoogle Scholar
  25. 25.
    B. Show, N. Mukherjee, A. Mondal, Reusable iron sulfide nanospheres towards promoted photocatalytic and electrocatalytic activities. New J. Chem. 41, 10083–10095 (2017)CrossRefGoogle Scholar
  26. 26.
    S.K. Maji, A.K. Dutta, P. Biswas, D.N. Srivastava, P. Paul, A. Mondal, B. Adhikary, Synthesis and characterization of FeS nanoparticles obtained from a dithiocarboxylate precursor complex and their photocatalytic, electrocatalytic and biomimic peroxidise behavior. Appl. Catal. A 419–420, 170–177 (2012)CrossRefGoogle Scholar
  27. 27.
    S.D. Disale, S.S. Garje, Growth of nanocrystalline FeS and FeS2 using iron(II) cinnamaldehyde thiosemicarbazone complexes as single-source precursors. Adv. Sci. Lett. 3, 80–86 (2010)CrossRefGoogle Scholar
  28. 28.
    H.A. Maydama, A.E. Shekeil, M.A. Khalid, A.A. Karbouly, Thermal degradation behaviour of some polydithiooxamide metal complexes. Ecl. Quím. 31, 45–52 (2006)CrossRefGoogle Scholar
  29. 29.
    A. Nagajothi, A. Kiruthika, S. Chitra, K. Parameswari, Fe(III) complexes with Schiff base ligands: synthesis, characterization, antimicrobial studies. Res. J. Chem. Sci. 3, 35–43 (2013)Google Scholar
  30. 30.
    R.J. Bandaranayake, G.W. Wen, J.Y. Lin, H.X. Jiang, C.M. Sorensen, Structural phase behavior in II–VI semiconductor nanoparticles. Appl. Phys. Lett. 67, 831–833 (1995)CrossRefGoogle Scholar
  31. 31.
    S.K. Bhar, N. Mukherjee, S.K. Maji, B. Adhikary, A. Mondal, Synthesis of nanocrystalline iron oxide ultrathin films by thermal decomposition of iron nitropruside: structural and optical properties. Mater. Res. Bull. 45, 1948–1953 (2010)CrossRefGoogle Scholar
  32. 32.
    C.L. Torres-Martinez, R. Kho, O.I. Mian, R.K. Mehra, Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals. J. Colloid Interface Sci. 240, 525–532 (2001)CrossRefGoogle Scholar
  33. 33.
    H.R. Pouretedal, A. Norozi, M.H. Keshavarz, A. Semnani, Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater. 162, 674–681 (2009)CrossRefGoogle Scholar
  34. 34.
    H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.H. Tseng, Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B 68, 1–11 (2006)CrossRefGoogle Scholar
  35. 35.
    M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis. Chem. Rev. 93, 341–357 (1993)CrossRefGoogle Scholar
  36. 36.
    D.S. Kim, S.Y. Kwak, The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl. Catal. A 323, 110–118 (2007)CrossRefGoogle Scholar
  37. 37.
    G. Kaur, B. Singh, P. Singh, M. Kaur, K.K. Buttar, K. Singh, A. Thakur, R. Bala, M. Kumar, A. Kumar, Preferentially grown nanostructured iron disulfide (FeS2) for removal of industrial pollutants. RSC Adv. 6, 99120–99128 (2016)CrossRefGoogle Scholar
  38. 38.
    G. Kaur, D. Pooja, M. Kumar, A. Thakur, R. Bala, A. Kumar, Electrochemical aspects of photocatalysis:Au@FeS2 nanocomposite for removal of industrial pollutant. Phys. Chem. Chem. Phys. 19, 32412–32420 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261, 3–18 (2010)CrossRefGoogle Scholar
  40. 40.
    I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004)CrossRefGoogle Scholar
  41. 41.
    H. Li, G. Wang, F. Zhang, Y. Cai, Y. Wang, I. Djerdj, Surfactant-assisted synthesis of CeO2 nanoparticles and their application in wastewater treatment. RSC Adv. 2, 12413–12423 (2012)CrossRefGoogle Scholar
  42. 42.
    N. Neelakandeswari, G. Sangami, N. Dharmaraj, N.K. Taek, H.Y. Kim, Spectroscopic investigations on the photodegradation of toluidine blue dye using cadmium sulphide nanoparticles prepared by a novel method. Spectrochim. Acta A 78, 1592–1598 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jagruti S. Suroshe
    • 1
    • 2
  • Sixberth Mlowe
    • 2
  • Shivram S. Garje
    • 1
  • Neerish Revaprasadu
    • 2
  1. 1.Department of ChemistryUniversity of MumbaiMumbaiIndia
  2. 2.Department of ChemistryUniversity of ZululandKwadlangezwaSouth Africa

Personalised recommendations