Advertisement

New Zn/Cd Coordination Polymers Constructed from Mixed Ligands: Crystal Structures and Photocatalytic Performances Toward Organic Dyes Degradation

  • Fu-Xue Wang
  • Xi Chen
  • Peng Wang
  • Chong-Chen Wang
Article

Abstract

Two coordination polymers (CPs), Cd(bpp)(H2O)L (BUC-18) and Zn(bpp)L (BUC-19), (H2L = cis-1,3-dibenzyl-2-imidazolidone-4,5-dicarboxylic acid, bpp = 1,3-bis(4-pyridyl)propane), have been synthesized under hydrothermal conditions, and characterized by single crystal X-ray analysis, Fourier transform infrared spectra (FTIR), thermogravimetric analyses (TGA), CNH element analysis and UV–Vis diffuse reflectance spectra (UV–Vis DRS). Upon the UV light irradiation, BUC-19 exhibited excellent photocatalytic performances toward methylene blue (initial concentration 10 mg L−1), methyl orange (initial concentration 10 mg L−1) and reactive red X-3B (initial concentration 50 mg L−1) with degradation efficiency of 93, 80 and 92%, respectively. The possible mechanism was proposed, which was further confirmed by trapping experiments.

Keywords

Coordination polymers Photocatalysis Organic pollutants Mechanism 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51578034), Great Wall Scholars Training Program Project of Beijing Municipality Universities (CIT&TCD20180323), Project of Construction of Innovation Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20170508) and Beijing Talent Project (2017A38).

References

  1. 1.
    N. Stock, S. Biswas, Chem. Rev. 112, 933–969 (2012)CrossRefGoogle Scholar
  2. 2.
    L. Shen, G. Wang, X. Zheng, Y. Cao, Y. Guo, K. Lin, L. Jiang, Chin. J. Catal. 38, 1373–1381 (2017)CrossRefGoogle Scholar
  3. 3.
    B.F. Meng, W.S. You, X.F. Sun, F. Zhang, M.Y. Liu, Inorg. Chem. Comm. 14, 35–37 (2011)CrossRefGoogle Scholar
  4. 4.
    L.F. Gao, Z.Y. Zhu, W.S. Feng, Q. Wang, H.L. Zhang, J. Phys. Chem. C. 120, 28456–28462 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Hirai, J. Mater. Chem. C. 2, 3336–3344 (2014)CrossRefGoogle Scholar
  6. 6.
    Y.Y. Liu, J. Zhang, F. Xu, L.X. Sun, T. Zhang, W.S. You, Y. Zhao, J. Zeng, Z. Cao, D. Yang, Cryst. Growth Des. 8, 3127–3129 (2008)CrossRefGoogle Scholar
  7. 7.
    W.J. Rieter, K.M. Pott, K.M. Taylor, W. Lin, J. Am. Chem. Soc. 130, 11584 (2008)CrossRefGoogle Scholar
  8. 8.
    I. Imaz, M. Rubiomartínez, L. Garcíafernández, F. García, D. Ruizmolina, J. Hernando, V. Puntes, D. Maspoch, Chem. Comm. 46, 4737–4739 (2010)CrossRefGoogle Scholar
  9. 9.
    J.-J. Li, C.-C. Wang, H. Fu, J. Cui, P. Xu, J. Guo, J.-R. Li, Dalton T. 46, 10197–10201 (2017)CrossRefGoogle Scholar
  10. 10.
    X.D. Du, C.C. Wang, J. Zhong, J.G. Liu, Y.X. Li, P. Wang, J. Environ. Chem. Eng. 5, 1866–1873 (2017)CrossRefGoogle Scholar
  11. 11.
    S.I. Noro, R. Ochi, Y. Inubushi, K. Kubo, T. Nakamura, Microporous Mesoporous Mater. 216, 92–96 (2015)CrossRefGoogle Scholar
  12. 12.
    Y.S. Bae, A.M. Spokoyny, O.K. Farha, R.Q. Snurr, J.T. Hupp, C.A. Mirkin, Chem. Commun. 46, 3478–3480 (2010)CrossRefGoogle Scholar
  13. 13.
    O.K. Farha, A.M. Spokoyny, K.L. Mulfort, S. Galli, J.T. Hupp, C.A. Mirkin, Small 5, 1727–1731 (2009)CrossRefGoogle Scholar
  14. 14.
    Y.M. Jeon, G.S. Armatas, J. Heo, M.G. Kanatzidis, C.A. Mirkin, Adv. Mater. 20, 2105–2110 (2010)CrossRefGoogle Scholar
  15. 15.
    M.L. Hu, V. Safarifard, E. Doustkhah, S. Rostamnia, A. Morsali, N. Nouruzi, S. Behesht, K. Akhbari, Microporous Mesoporous Mater. 256, 111–127 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Rostamnia, A. Morsali, RSC Adv. 4, 10514–10518 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Rostamnia, Z. Karimi, Inorg. Chim. Acta. 428, 133–137 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Rostamnia, H. Alamgholiloo, X. Liu, J. Colloid Interf. Sci. 469, 310–317 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Rostamnia, H. Xin, Appl. Organomet. Chem. 28, 359–363 (2014)CrossRefGoogle Scholar
  20. 20.
    M.R. Maurya, A. Kumar, P. Manikandan, S. Chand, Appl. Catal. A 277, 45–53 (2004)CrossRefGoogle Scholar
  21. 21.
    S.K. Ghosh, W. Kaneko, D. Kiriya, M. Ohba, S. Kitagawa, Angew. Chem. 47, 8843–8847 (2008)CrossRefGoogle Scholar
  22. 22.
    H.S. Choi, M.P. Suh, Angew. Chem. 48, 6865–6869 (2009)CrossRefGoogle Scholar
  23. 23.
    R.W. Flaig, T.M. Osborn Popp, A.M. Fracaroli, E.A. Kapustin, M.J. Kalmutzki, R.M. Altamimi, F. Fathieh, J.A. Reimer, O.M. Yaghi, J. Am. Chem. Soc. 139, 12125–12128 (2017)CrossRefGoogle Scholar
  24. 24.
    H. Kim, S. Yang, S.R. Rao, S. Narayanan, E.A. Kapustin, H. Furukawa, A.S. Umans, O.M. Yaghi, E.N. Wang, Science. 356, 430–434 (2017)CrossRefGoogle Scholar
  25. 25.
    G. Song, Z. Wang, L. Wang, G. Li, M. Huang, F. Yin, Chin. J. Catal. 35, 185–195 (2014)CrossRefGoogle Scholar
  26. 26.
    C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. 7, 2831–2867 (2014)CrossRefGoogle Scholar
  27. 27.
    J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, J. Am. Chem. Soc. 130, 13850–13851 (2008)CrossRefGoogle Scholar
  28. 28.
    C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, A.D. Louër, G. Férey, J. Am. Chem. Soc. 124, 13519–13526 (2002)CrossRefGoogle Scholar
  29. 29.
    Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li, H.-C. Zhou, Chem. Soc. Rev. 45, 2327–2367 (2016)CrossRefGoogle Scholar
  30. 30.
    Y. Zhao, L. Guo, F. Gándara, Y. Ma, Z. Liu, C. Zhu, H. Lyu, C.A. Trickett, E.A. Kapustin, O. Terasaki, J. Am. Chem. Soc. 139, 13166–13172 (2017)CrossRefGoogle Scholar
  31. 31.
    J. Yang, Y.B. Zhang, Q. Liu, C.A. Trickett, E. Gutierrez-Puebla, M. Monge, H. Cong, A. Aldossary, H. Deng, O.M. Yaghi, J. Am. Chem. Soc. 139, 6448–6455 (2017)CrossRefGoogle Scholar
  32. 32.
    K. Choi, D. Kim, B. Rungtaweevoranit, C.A. Trickett, J.T.D. Barmanbek, P. Yang, O.M. Yaghi, J. Am. Chem. Soc. 139, 356–362 (2016)CrossRefGoogle Scholar
  33. 33.
    C.C. Wang, Y.Q. Zhang, T. Zhu, X.Y. Zhang, P. Wang, S.J. Gao, Polyhedron 90, 58–68 (2015)CrossRefGoogle Scholar
  34. 34.
    L. Shen, R. Liang, L. Wu, Chin. J. Catal. 36, 2071–2088 (2015)CrossRefGoogle Scholar
  35. 35.
    D. Shen, J. Fan, W. Zhou, B. Gao, Q. Yue, Q. Kang, J. Hazard. Mater. 172, 99–107 (2009)CrossRefGoogle Scholar
  36. 36.
    W.K. Jo, R.J. Tayade, Chin. J. Catal. 35, 1781–1792 (2014)CrossRefGoogle Scholar
  37. 37.
    G. Sharma, A. Kumar, N. Mu, A. Kumar, A.A.H. Al-Muhtaseb, P. Dhiman, A.A. Ghfar, F.J. Stadler, M.R. Khan, J. Clean. Prod. 172, 2919–2930 (2017)CrossRefGoogle Scholar
  38. 38.
    A. Kumar, G. Sharma, S. Kalia, C. Guo, N. Mu, J. Photochem. Photobiol. A 337, 118–131 (2017)CrossRefGoogle Scholar
  39. 39.
    G. Sharma, V.K. Gupta, S. Agarwal, A. Kumar, S. Thakur, D. Pathania, J. Mol. Liq. 219, 1137–1143 (2016)CrossRefGoogle Scholar
  40. 40.
    A. Kumar, M. Naushad, A. Rana, G. Sharma, Inamuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, Int. J. Biol. Macromol. 104, 1172–1184 (2017)CrossRefGoogle Scholar
  41. 41.
    G. Sharma, S. Bhogal, M. Naushad, Inamuddin, A. Kumar, F.J. Stadler, J. Photochem. Photobiol. A 347, 235–243 (2017)CrossRefGoogle Scholar
  42. 42.
    G. Sharma, M. Naushad, A. Kumar, S. Devi, M.R. Khan, Iran. Polym. J. 24, 1003–1013 (2015)CrossRefGoogle Scholar
  43. 43.
    A.X.S. Bruker, SMART, Version 5.611 (Bruker AXS, Madison, 2000)Google Scholar
  44. 44.
    A.X.S. Bruker, SAINT, Version 6.28 (Bruker AXS, Madison, 2003)Google Scholar
  45. 45.
    A.X.S. Bruker, SADABS, Version 2.03 (Bruker AXS, Madison, 2000)Google Scholar
  46. 46.
    G.M. Sheldrick, SHELX-97 (Göttingen University, Germany, 1997)Google Scholar
  47. 47.
    X.L. Chen, B. Zhang, H.M. Hu, F. Fu, X.L. Wu, T. Qin, M.L. Yang, G.L. Xue, J.W. Wang, Cryst. Growth Des. 8, 3706–3712 (2008)CrossRefGoogle Scholar
  48. 48.
    X. Shi, G. Zhu, X. Wang, G. Li, Q. Fang, G. Wu, G. Tian, M. Xue, X. Zhao, Cryst. Growth Des. 5, 207–213 (2004)CrossRefGoogle Scholar
  49. 49.
    J. Hao, B. Yu, K.V. Hecke, G. Cui, CrystEngComm. 17, 2279–2293 (2015)CrossRefGoogle Scholar
  50. 50.
    C.G. Silva, A. Corma, H. García, J. Mater. Chem. 20, 3141–3156 (2010)CrossRefGoogle Scholar
  51. 51.
    J.L. Wang, C. Wang, W. Lin, ACS Catal. 2, 2630–2640 (2012)CrossRefGoogle Scholar
  52. 52.
    J. Guo, J.F. Ma, B. Liu, W.Q. Kan, J. Yang, Cryst. Growth Des. 11, 3609–3621 (2011)CrossRefGoogle Scholar
  53. 53.
    C.C. Wang, X.D. Du, J. Li, X.X. Guo, P. Wang, J. Zhang, Appl. Catal. B 193, 198–216 (2016)CrossRefGoogle Scholar
  54. 54.
    H.P. Jing, C.C. Wang, Y.W. Zhang, P. Wang, R. Li, RSC Adv. 4, 54454–54462 (2014)CrossRefGoogle Scholar
  55. 55.
    C.C. Wang, D.X. Xu, H.P. Jing, X.X. Guo, P. Wang, S.J. Gao, J. Inorg. Organomet. Polym. Mater. 26, 276–284 (2016)CrossRefGoogle Scholar
  56. 56.
    Y. Wang, Y. He, T. Li, J. Cai, M. Luo, L. Zhao, Chem. Eng. J. 189–190, 473–481 (2012)CrossRefGoogle Scholar
  57. 57.
    M.J. Height, S.E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, Appl. Catal. B 63, 305–312 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fu-Xue Wang
    • 1
  • Xi Chen
    • 1
  • Peng Wang
    • 1
  • Chong-Chen Wang
    • 1
  1. 1.Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and ArchitectureBeijingChina

Personalised recommendations