Skip to main content

Advertisement

Log in

Physical and Electrochemical Studies on Ceria Filled PVA Proton Conducting Polymer Electrolyte for Energy Storage Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This article reports the ease and novel method to synthesise CeO2 nanoparticle in PVA polymer matrix. The optical, structural, thermal, mechanical, morphological, dielectric and electrochemical properties of the prepared films were understood by various charecterisation techniques such as UV–Visible, XRD, DSC, AFM, Impedance analyser, cyclic voltameter. The direct band gap for pure PVA is 5.426 eV and decreased to 4.278 eV. The indirect band gap values decreased from 4.86 to 2.04 eV. The degree of crystallinity for pure PVA is about 54% and increases to 79% for 15 wt% ACS doped PVA composite. Increase in Tg is observed with increase in doping concentration and is fitted to WLF–VTF model to evaluate dynamic fragility and apparent activation energy. The Non-Debye type of variation in dielectric constant with respect to frequency is observed. From the variation observed for M′ values is the indication of the presence of electrode polarization effect. The s value varied from 0.7 to 1.6, Therefore, the conductivity phenomenon explained on the NCL/SLPL type ion hopping mechanism. The prepared polymer electrolyte shows proton conductivity of the order of 10−3 Scm−1. The cyclic voltammograms shows an ideal capacitive behavior with good electrochemical stability. This article discuss about fundamentals of conducting phenomenon and its applicability in portable and flexible energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Gao, K. Lian, RSC Adv. 4, 33091 (2014)

    Article  CAS  Google Scholar 

  2. V. Neburchilov, J. Martin, H. Wang, J. Zhang, J. Power Sources 169, 221–238 (2007)

    Article  CAS  Google Scholar 

  3. M. Hema, S. Selvasekerapandian, A. Sakunthala, D. Arunkuma, H. Nithya, Physica B 403, 2740–2747 (2008)

    Article  CAS  Google Scholar 

  4. M. Rikukawa, K. Sanui, Prog. Polym. Sci. 25, 1463–1502 (2000)

    Article  CAS  Google Scholar 

  5. M.J. Wei, J.Q. Fu, Y.D. Wang, J.Y. Gu, B.L. Liu, H.Y. Zang, E.L. Zhou, K.Z. Shao, Z.M. Su, J. Mater. Chem. A 5, 1085–1093 (2017)

    Article  CAS  Google Scholar 

  6. G. Inzelt, M. Pineri, J.W. Schultze, M.A. Vorotyntsev, Electrochim. Acta 45, 2403–2421 (2000)

    Article  CAS  Google Scholar 

  7. G.A. Voth, Acc. Chem. Res. 39, 143–145 (2006)

    Article  CAS  Google Scholar 

  8. M. Sadakiyo, T. Yamada. H. Kitagawa, J. Am. Chem. Soc. 136, 13166–13169 (2014)

    Article  CAS  Google Scholar 

  9. J. Naik, R.F. Bhajantri, T. Sheela, S.G. Rathod, Polym. Compos. (2016). https://doi.org/10.1002/pc.24063

    Google Scholar 

  10. N. Kulshrestha, B. Chatterjee, P.N. Gupta, Mater. Sci. Eng. B 184, 49–57 (2014)

    Article  CAS  Google Scholar 

  11. P. Donoso, W. Gorecki, C. Berthier, F. Defendini, C. Poinsignon, M.B. Armand, Solid State Ion. 28, 969 (1988)

    Article  Google Scholar 

  12. S. Sikkanthar, S. Karthikeyan, S. Selvasekarapandian, D.V. Pandi, S. Nithya, C. Sanjeeviraja, J Solid State Electrochem. 19, 987–999 (2015)

    Article  CAS  Google Scholar 

  13. I. Albinsson, B.E. Mellander, J.R. Stevens, Solid State Ion. 72, 177–182 (1994)

    Article  CAS  Google Scholar 

  14. K.K. Maurya, B. Bhattacharya, S. Chandr, Phys. State Solid 147, 347 (1995)

    Article  CAS  Google Scholar 

  15. B. Haldar, R.M. Singru, K.K. Maurya, S. Chandra, Phys. Rev. B 54(10), 7143–7150 (1996)

    Article  CAS  Google Scholar 

  16. M.E. Gouda, S.K. Badr, M.A. Hassan, E. Sheha, Ionics 17, 255–261 (2011)

    Article  CAS  Google Scholar 

  17. M.H. Buraidah, L.P. Teo, S.R. Majid, A.K. Arof, Physica B 404, 1373–1379 (2009)

    Article  CAS  Google Scholar 

  18. G. Hirankumar, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, J. Power Sources 144, 262–267 (2005)

    Article  CAS  Google Scholar 

  19. R. Bouchet, E. Siebert, Solid State Ion. 118, 287–299 (1999)

    Article  CAS  Google Scholar 

  20. C. Ambika, G. Hirankumar, Appl. Phys. A 122, 113 (2016)

    Article  Google Scholar 

  21. X. Meng, H.N. Wang, S.Y. Song, H.J. Zhang, Chem. Soc. Rev. (2017). https://doi.org/10.1039/C6CS00528D

    Google Scholar 

  22. F. Vaja, O. Oprea, D. Ficai, A. Ficai, C. Guran, Digest. J. Nanomater. Biostruct. 9(1), 187–195 (2014)

    Google Scholar 

  23. [V.D. Araujo, W. Avansi, H.B. de Carvalho, M.L. Moreira, E. Longo, C. Ribeiro, M.I.B. Bernardi, CrystEngComm 14, 1150 (2012)

    Article  CAS  Google Scholar 

  24. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423–428 (2009)

    Article  CAS  Google Scholar 

  25. S. Gnanam, V. Rajendran, J. Sol-Gel Sci. Technol. 58, 62–69 (2011)

    Article  CAS  Google Scholar 

  26. V. Hebbar, R.F. Bhajantri, J. Naik, S.G. Rathod, Mater. Res. Exp. 3, 075301 (2016)

    Article  Google Scholar 

  27. H.S. Ragab, M.F.H. Abd El-Kader, Phys. Screen. 87, 025602 (2013)

    Article  Google Scholar 

  28. C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai, Chem. Mater. 17, 4514–4522 (2005)

    Article  CAS  Google Scholar 

  29. M. Hirano, Y. Fukuda, H. Iwata, Y. Hotta, M. Inagaki, J. Am. Ceram. Soc. 83(5), 1287–1289 (2000)

    Article  CAS  Google Scholar 

  30. M. Tanaka, Y. Takeda, T. Wakiya, Y. Wakamoto, K. Harigaya, T. Ito, T. Tarao, H. Kawakami, J. Power Sources 342, 125–134 (2017)

    Article  CAS  Google Scholar 

  31. H. Imagawa, A. Suda, K. Yamamura, S. Sun, J. Phys. Chem. C 115, 1740–1745 (2011)

    Article  CAS  Google Scholar 

  32. M.K. Chinnu, K.V. Anand, R.M. Kumar, T. Alagesan, R. Jayavel, Mater. Lett. 113, 170–173 (2013)

    Article  CAS  Google Scholar 

  33. K. Selvakumar, J. Kalaiselvimary, S. Rajendran, M.R. Prabhu, Polym. Plast. Technol. Eng. 55(18), 1940–1948 (2016)

    Article  CAS  Google Scholar 

  34. B. Ramaraj, J. Appl. Polym. Sci. 103, 1127–1132 (2007)

    Article  CAS  Google Scholar 

  35. A.L. Agapov, A.P. Sokolov, Macromolecules 44, 4410–4414 (2011)

    Article  CAS  Google Scholar 

  36. I. Dranca, Chem. J. Mold. 3(1)), 31–43 (2008)

    Google Scholar 

  37. B.A.P. Betancourt, J.F. Douglas, F.W. Starr, Soft Matter. 9, 241 (2013)

    Article  Google Scholar 

  38. J.S. Karthika, B. Vishalakshi, J. Naik, Int. J. Biol. Macromol. 82, 61–67 (2016)

    Article  CAS  Google Scholar 

  39. V. Hebbar, R.F. Bhajantri, J. Naik, J. Mater. Sci. 28, 5827–5839 (2017)

    CAS  Google Scholar 

  40. S.K. Gedam, A.P. Khandale, S.S. Bhoga, Ind. J. Pure Appl. Phys. 51, 367–371 (2013)

    CAS  Google Scholar 

  41. J. Tahalyani, K.K. Rahangdale, R. Aepuru, B. Kandasubramanian, S. Datar, RSC Adv. 6, 36588–36598 (2016)

    Article  CAS  Google Scholar 

  42. R. Golshaei, Z. Guler, C. unsal, A.S. Sarac, Eur. Polym. J. 66, 502–512 (2015)

    Article  CAS  Google Scholar 

  43. S. Ke, H. Huang, S. Yu, L. Zhou, J. Appl. Phys. 107, 084112 (2010)

    Article  Google Scholar 

  44. T. Tiwari, N. Tarannum, M. Kumar, N. Srivastava, Ionics 20, 1435–1443 (2014)

    Article  CAS  Google Scholar 

  45. H.M.E. Mallah, Acta Phys. Polym. A 1, 122 (2012)

    Google Scholar 

  46. J.J. Habasaki, K.L. Ngai, Y. Hiwatari, Chem. Phys. 120, 17 (2004)

    Google Scholar 

  47. S. Rajendran, T. Uma, Ionics 6, 288–293 (2000)

    Article  CAS  Google Scholar 

  48. C.W. Liew, K.H. Arifin, J. Kawamura, Y. Iwai, S. Ramesh, A.K. Arof, J. Non-Cryst. Solids 458, 97–106 (2017)

    Article  CAS  Google Scholar 

  49. S. Yang, L. Gao, J. Am. Chem. Soc. 128, 9330–9331 (2006)

    Article  CAS  Google Scholar 

  50. T.N. Ravishankar, T. Ramakrishnappa, G. Nagaraju, H. Rajanaika, Chem. Open 4, 146–154 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for the research projects (SR/FTP/PS-011/2010) and (SB/EMEQ-089/2013) and to UGC, New Delhi for SAP-CAS Phase-II (F.530/9/CAS-II/2015(SAP-I) research grant. The authors are also thankful to DST-PURSE Laboratory, Mangalore University for providing UV–Visible, TGA measurements. The authors are also thankful to USIC, Karnatak University, Dharwad for providing DSC, AFM, CV measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Bhajantri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, J., Bhajantri, R.F. Physical and Electrochemical Studies on Ceria Filled PVA Proton Conducting Polymer Electrolyte for Energy Storage Applications. J Inorg Organomet Polym 28, 906–919 (2018). https://doi.org/10.1007/s10904-018-0801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0801-3

Keywords

Navigation