Physical and Electrochemical Studies on Ceria Filled PVA Proton Conducting Polymer Electrolyte for Energy Storage Applications

  • Jagadish Naik
  • R. F. Bhajantri


This article reports the ease and novel method to synthesise CeO2 nanoparticle in PVA polymer matrix. The optical, structural, thermal, mechanical, morphological, dielectric and electrochemical properties of the prepared films were understood by various charecterisation techniques such as UV–Visible, XRD, DSC, AFM, Impedance analyser, cyclic voltameter. The direct band gap for pure PVA is 5.426 eV and decreased to 4.278 eV. The indirect band gap values decreased from 4.86 to 2.04 eV. The degree of crystallinity for pure PVA is about 54% and increases to 79% for 15 wt% ACS doped PVA composite. Increase in Tg is observed with increase in doping concentration and is fitted to WLF–VTF model to evaluate dynamic fragility and apparent activation energy. The Non-Debye type of variation in dielectric constant with respect to frequency is observed. From the variation observed for M′ values is the indication of the presence of electrode polarization effect. The s value varied from 0.7 to 1.6, Therefore, the conductivity phenomenon explained on the NCL/SLPL type ion hopping mechanism. The prepared polymer electrolyte shows proton conductivity of the order of 10−3 Scm−1. The cyclic voltammograms shows an ideal capacitive behavior with good electrochemical stability. This article discuss about fundamentals of conducting phenomenon and its applicability in portable and flexible energy storage devices.


Solid polymer electrolyte Dielectric Dielectrics Proton conductivity Poly(vinyl alcohol) Nano composites Super linear power law 



The authors are thankful to Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for the research projects (SR/FTP/PS-011/2010) and (SB/EMEQ-089/2013) and to UGC, New Delhi for SAP-CAS Phase-II (F.530/9/CAS-II/2015(SAP-I) research grant. The authors are also thankful to DST-PURSE Laboratory, Mangalore University for providing UV–Visible, TGA measurements. The authors are also thankful to USIC, Karnatak University, Dharwad for providing DSC, AFM, CV measurement facilities.


  1. 1.
    H. Gao, K. Lian, RSC Adv. 4, 33091 (2014)CrossRefGoogle Scholar
  2. 2.
    V. Neburchilov, J. Martin, H. Wang, J. Zhang, J. Power Sources 169, 221–238 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Hema, S. Selvasekerapandian, A. Sakunthala, D. Arunkuma, H. Nithya, Physica B 403, 2740–2747 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Rikukawa, K. Sanui, Prog. Polym. Sci. 25, 1463–1502 (2000)CrossRefGoogle Scholar
  5. 5.
    M.J. Wei, J.Q. Fu, Y.D. Wang, J.Y. Gu, B.L. Liu, H.Y. Zang, E.L. Zhou, K.Z. Shao, Z.M. Su, J. Mater. Chem. A 5, 1085–1093 (2017)CrossRefGoogle Scholar
  6. 6.
    G. Inzelt, M. Pineri, J.W. Schultze, M.A. Vorotyntsev, Electrochim. Acta 45, 2403–2421 (2000)CrossRefGoogle Scholar
  7. 7.
    G.A. Voth, Acc. Chem. Res. 39, 143–145 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Sadakiyo, T. Yamada. H. Kitagawa, J. Am. Chem. Soc. 136, 13166–13169 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Naik, R.F. Bhajantri, T. Sheela, S.G. Rathod, Polym. Compos. (2016). Google Scholar
  10. 10.
    N. Kulshrestha, B. Chatterjee, P.N. Gupta, Mater. Sci. Eng. B 184, 49–57 (2014)CrossRefGoogle Scholar
  11. 11.
    P. Donoso, W. Gorecki, C. Berthier, F. Defendini, C. Poinsignon, M.B. Armand, Solid State Ion. 28, 969 (1988)CrossRefGoogle Scholar
  12. 12.
    S. Sikkanthar, S. Karthikeyan, S. Selvasekarapandian, D.V. Pandi, S. Nithya, C. Sanjeeviraja, J Solid State Electrochem. 19, 987–999 (2015)CrossRefGoogle Scholar
  13. 13.
    I. Albinsson, B.E. Mellander, J.R. Stevens, Solid State Ion. 72, 177–182 (1994)CrossRefGoogle Scholar
  14. 14.
    K.K. Maurya, B. Bhattacharya, S. Chandr, Phys. State Solid 147, 347 (1995)CrossRefGoogle Scholar
  15. 15.
    B. Haldar, R.M. Singru, K.K. Maurya, S. Chandra, Phys. Rev. B 54(10), 7143–7150 (1996)CrossRefGoogle Scholar
  16. 16.
    M.E. Gouda, S.K. Badr, M.A. Hassan, E. Sheha, Ionics 17, 255–261 (2011)CrossRefGoogle Scholar
  17. 17.
    M.H. Buraidah, L.P. Teo, S.R. Majid, A.K. Arof, Physica B 404, 1373–1379 (2009)CrossRefGoogle Scholar
  18. 18.
    G. Hirankumar, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, J. Power Sources 144, 262–267 (2005)CrossRefGoogle Scholar
  19. 19.
    R. Bouchet, E. Siebert, Solid State Ion. 118, 287–299 (1999)CrossRefGoogle Scholar
  20. 20.
    C. Ambika, G. Hirankumar, Appl. Phys. A 122, 113 (2016)CrossRefGoogle Scholar
  21. 21.
    X. Meng, H.N. Wang, S.Y. Song, H.J. Zhang, Chem. Soc. Rev. (2017). Google Scholar
  22. 22.
    F. Vaja, O. Oprea, D. Ficai, A. Ficai, C. Guran, Digest. J. Nanomater. Biostruct. 9(1), 187–195 (2014)Google Scholar
  23. 23.
    [V.D. Araujo, W. Avansi, H.B. de Carvalho, M.L. Moreira, E. Longo, C. Ribeiro, M.I.B. Bernardi, CrystEngComm 14, 1150 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423–428 (2009)CrossRefGoogle Scholar
  25. 25.
    S. Gnanam, V. Rajendran, J. Sol-Gel Sci. Technol. 58, 62–69 (2011)CrossRefGoogle Scholar
  26. 26.
    V. Hebbar, R.F. Bhajantri, J. Naik, S.G. Rathod, Mater. Res. Exp. 3, 075301 (2016)CrossRefGoogle Scholar
  27. 27.
    H.S. Ragab, M.F.H. Abd El-Kader, Phys. Screen. 87, 025602 (2013)CrossRefGoogle Scholar
  28. 28.
    C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai, Chem. Mater. 17, 4514–4522 (2005)CrossRefGoogle Scholar
  29. 29.
    M. Hirano, Y. Fukuda, H. Iwata, Y. Hotta, M. Inagaki, J. Am. Ceram. Soc. 83(5), 1287–1289 (2000)CrossRefGoogle Scholar
  30. 30.
    M. Tanaka, Y. Takeda, T. Wakiya, Y. Wakamoto, K. Harigaya, T. Ito, T. Tarao, H. Kawakami, J. Power Sources 342, 125–134 (2017)CrossRefGoogle Scholar
  31. 31.
    H. Imagawa, A. Suda, K. Yamamura, S. Sun, J. Phys. Chem. C 115, 1740–1745 (2011)CrossRefGoogle Scholar
  32. 32.
    M.K. Chinnu, K.V. Anand, R.M. Kumar, T. Alagesan, R. Jayavel, Mater. Lett. 113, 170–173 (2013)CrossRefGoogle Scholar
  33. 33.
    K. Selvakumar, J. Kalaiselvimary, S. Rajendran, M.R. Prabhu, Polym. Plast. Technol. Eng. 55(18), 1940–1948 (2016)CrossRefGoogle Scholar
  34. 34.
    B. Ramaraj, J. Appl. Polym. Sci. 103, 1127–1132 (2007)CrossRefGoogle Scholar
  35. 35.
    A.L. Agapov, A.P. Sokolov, Macromolecules 44, 4410–4414 (2011)CrossRefGoogle Scholar
  36. 36.
    I. Dranca, Chem. J. Mold. 3(1)), 31–43 (2008)Google Scholar
  37. 37.
    B.A.P. Betancourt, J.F. Douglas, F.W. Starr, Soft Matter. 9, 241 (2013)CrossRefGoogle Scholar
  38. 38.
    J.S. Karthika, B. Vishalakshi, J. Naik, Int. J. Biol. Macromol. 82, 61–67 (2016)CrossRefGoogle Scholar
  39. 39.
    V. Hebbar, R.F. Bhajantri, J. Naik, J. Mater. Sci. 28, 5827–5839 (2017)Google Scholar
  40. 40.
    S.K. Gedam, A.P. Khandale, S.S. Bhoga, Ind. J. Pure Appl. Phys. 51, 367–371 (2013)Google Scholar
  41. 41.
    J. Tahalyani, K.K. Rahangdale, R. Aepuru, B. Kandasubramanian, S. Datar, RSC Adv. 6, 36588–36598 (2016)CrossRefGoogle Scholar
  42. 42.
    R. Golshaei, Z. Guler, C. unsal, A.S. Sarac, Eur. Polym. J. 66, 502–512 (2015)CrossRefGoogle Scholar
  43. 43.
    S. Ke, H. Huang, S. Yu, L. Zhou, J. Appl. Phys. 107, 084112 (2010)CrossRefGoogle Scholar
  44. 44.
    T. Tiwari, N. Tarannum, M. Kumar, N. Srivastava, Ionics 20, 1435–1443 (2014)CrossRefGoogle Scholar
  45. 45.
    H.M.E. Mallah, Acta Phys. Polym. A 1, 122 (2012)Google Scholar
  46. 46.
    J.J. Habasaki, K.L. Ngai, Y. Hiwatari, Chem. Phys. 120, 17 (2004)Google Scholar
  47. 47.
    S. Rajendran, T. Uma, Ionics 6, 288–293 (2000)CrossRefGoogle Scholar
  48. 48.
    C.W. Liew, K.H. Arifin, J. Kawamura, Y. Iwai, S. Ramesh, A.K. Arof, J. Non-Cryst. Solids 458, 97–106 (2017)CrossRefGoogle Scholar
  49. 49.
    S. Yang, L. Gao, J. Am. Chem. Soc. 128, 9330–9331 (2006)CrossRefGoogle Scholar
  50. 50.
    T.N. Ravishankar, T. Ramakrishnappa, G. Nagaraju, H. Rajanaika, Chem. Open 4, 146–154 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsMangalore UniversityMangaloreIndia
  2. 2.Department of PhysicsKarnatak UniversityDharwadIndia

Personalised recommendations