Advertisement

Dodonaea viscosa Leaf Extract Assisted Synthesis of Gold Nanoparticles: Characterization and Cytotoxicity Against A549 NSCLC Cancer Cells

  • M. Anandan
  • H. Gurumallesh Prabu
Article
  • 161 Downloads

Abstract

The gold nanoparticles with distinct morphologies were synthesized using Dodonaea viscosa leaf extract in different polar/nonpolar solvents. The solvents such as methanol, acetone, acetonitrile and water were used in the synthesis of nanoparticles which attributed to obtaining nanoparticles with different physical, chemical and cytotoxic properties. The FT-IR results evidenced the presence of functional groups responsible for effective reduction (Au3+ to Au0) and capping activity. The XRD and EDX results confirmed the formation of gold nanoparticles whereas the SEM and TEM results revealed their distinct size (58, 90, 43 and 30 nm) and morphology (spherical particles, irregularly shaped particles and distorted spherical particles) for different solvents (methanol, acetone, acetonitrile and water) used for extraction. The IC50 values of synthesized AuNPs were found to be 4, 60, 8, and 100 µg/ml of leaf extracts obtained from methanol, acetone, acetonitrile and water, respectively. The cytotoxicity of AuNPs revealed that the synthesized AuNPs could inhibit the growth of A549 NSCLC cells effectively and activity of the NPs varies with distinct morphology.

Graphical Abstract

Keywords

A549 NSCLC cancer cells Cytotoxicity Dodonaea viscosa Gold nanoparticles HR-TEM 

Notes

Acknowledgements

The authors are thankful to the University Grants Commission (UGC-BSR: F.4-1/2006 (BSR)/7-188/2007 (BSR)), New Delhi, India for the financial assistance by the scheme of a basic scientific research fellowship. The author (M. Anandan) acknowledges the Department of Industrial Chemistry and the Department of Physics, Alagappa University, Karaikudi for providing Scanning Electron Microscopy facility and X-Ray Diffraction analysis facility, respectively. The author (M. Anandan) is very grateful to Mr. Varunkumar, Research scholar, Cancer Biology lab, Department of Biochemistry, Bharathidasan University, Trichy for his help to carry out cancer studies.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J. Ferlay, D.M. Parkin, E. Steliarova-Foucher, Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer 46, 765–781 (2010).  https://doi.org/10.1016/j.ejca.2009.12.014 CrossRefGoogle Scholar
  2. 2.
    T.N.L.S.T.R. Team, Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011).  https://doi.org/10.1056/NEJMoa1102873 CrossRefGoogle Scholar
  3. 3.
    S. Karthik, R. Sankar, K. Varunkumar, V. Ravikumar, Romidepsin induces cell cycle arrest, apoptosis, histone hyperacetylation and reduces matrix metalloproteinases 2 and 9 expression in bortezomib sensitized non-small cell lung cancer cells. Biomed. Pharmacother. 68, 327–334 (2014).  https://doi.org/10.1016/j.biopha.2014.01.002 CrossRefGoogle Scholar
  4. 4.
    L.-H. Huang, H.-D. Xu, Z.-Y. Yang, Y.-F. Zheng, H.-M. Liu, Synthesis and anticancer activity of novel C6-piperazine substituted purine steroid–nucleosides analogues. Steroids 82, 1–6 (2014).  https://doi.org/10.1016/j.steroids.2013.12.004 CrossRefGoogle Scholar
  5. 5.
    S. Aswathy Aromal, D. Philip, Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta A 97, 1–5 (2012).  https://doi.org/10.1016/j.saa.2012.05.083 CrossRefGoogle Scholar
  6. 6.
    S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011).  https://doi.org/10.1039/C1GC15386B CrossRefGoogle Scholar
  7. 7.
    K.B. Narayanan, N. Sakthivel, Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett. 62, 4588–4590 (2008).  https://doi.org/10.1016/j.matlet.2008.08.044 CrossRefGoogle Scholar
  8. 8.
    S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3, 482–488 (2004).  https://doi.org/10.1038/nmat1152 CrossRefGoogle Scholar
  9. 9.
    L. Castro, M.L. Blazquez, J.A. Munoz, F. Gonzalez, C. Garcia-Balboa, A. Ballester, Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem. 46, 1076–1082 (2011).  https://doi.org/10.1016/j.procbio.2011.01.025 CrossRefGoogle Scholar
  10. 10.
    D. Philip, Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim. Acta A 78, 327–331 (2011).  https://doi.org/10.1016/j.saa.2010.10.015 CrossRefGoogle Scholar
  11. 11.
    P. Dauthal, M. Mukhopadhyay, In-vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract. J. Nanopart. Res. 15, 1366 (2012).  https://doi.org/10.1007/s11051-012-1366-7 CrossRefGoogle Scholar
  12. 12.
    B. Ankamwar, M. Chaudhary, M. Sastry, Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Syn. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 19–26 (2005)  https://doi.org/10.1081/SIM-200047527.CrossRefGoogle Scholar
  13. 13.
    S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22, 577–583 (2006).  https://doi.org/10.1021/bp0501423 CrossRefGoogle Scholar
  14. 14.
    J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18, 105104 (2007). http://stacks.iop.org/0957-4484/18/i=10/a=105104.
  15. 15.
    A.N. Mishra, S. Bhadauria, M.S. Gaur, R. Pasricha, B.S. Kushwah, Synthesis of gold nanoparticles by leaves of zero-calorie sweetener herb (Stevia rebaudiana) and their nanoscopic characterization by spectroscopy and microscopy. Int. J. Green Nanotechnol. 1, P118–P124 (2010).  https://doi.org/10.1080/19430871003684705 CrossRefGoogle Scholar
  16. 16.
    C. Krishnaraj, E.G. Jagan, S. Rajasekar, P. Selvakumar, P.T. Kalaichelvan, N. Mohan, Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B 76, 50–56 (2010).  https://doi.org/10.1016/j.colsurfb.2009.10.008 CrossRefGoogle Scholar
  17. 17.
    P.Z. Maskovic, V. Velickovic, S. Durovic, Z. Zekovic, M. Radojkovic, A. Cvetanovic, J. Svarc-Gajic, M. Mitic, J. Vujic, Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches. Phytomedicine 38, 118–124 (2018).  https://doi.org/10.1016/j.phymed.2017.11.010 CrossRefGoogle Scholar
  18. 18.
    S. Uysal, A. Aktumsek, C.M.N. Picot, A. Sahan, A. Mollica, G. Zengin, M. Fawzi Mahomoodally, A comparative in vitro and in silico study of the biological potential and chemical fingerprints of Dorcycinum pentapyllum subsp. haussknechtii using three extraction procedures. New J. Chem. 41, 13952–13960 (2017).  https://doi.org/10.1039/C7NJ03497K CrossRefGoogle Scholar
  19. 19.
    G. Sharmila, M. Thirumarimurugan, Phytofabrication, characterization and antibacterial activity of Cassia auriculata leaf extract derived CuO nanoparticles. J. Inorg. Organomet. Polym. Mater. 27, 668–673 (2017).  https://doi.org/10.1007/s10904-017-0509-9 CrossRefGoogle Scholar
  20. 20.
    I. Vieitez, L. Maceiras, I. Jachmanian, S. Albores, Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. J. Supercrit. Fluids 133, 58–64 (2018).  https://doi.org/10.1016/j.supflu.2017.09.025 CrossRefGoogle Scholar
  21. 21.
    P. Wang, X.-L. Bi, Y.-M. Guo, J.-Q. Cao, S.-J. Zhang, H.-N. Yuan, H.-R. Piao, Y.-Q. Zhao, Semi-synthesis and anti-tumor evaluation of novel 25-hydroxyprotopanaxadiol derivatives. Eur. J. Med. Chem. 55, 137–145 (2012).  https://doi.org/10.1016/j.ejmech.2012.07.012 CrossRefGoogle Scholar
  22. 22.
    A. Bistrovic, L. Krstulovic, A. Harej, P. Grbcic, M. Sedic, S. Kostrun, S.K. Pavelic, M. Bajic, S. Raic-Malic, Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. Eur. J. Med. Chem. 143, 1616–1634 (2017).  https://doi.org/10.1016/j.ejmech.2017.10.061 CrossRefGoogle Scholar
  23. 23.
    D. Zheng, H. Zhang, C.-W. Zheng, Y.-Z. Lao, D.-Q. Xu, L.-B. Xiao, H.-X. Xu, Garciyunnanimines A–C, novel cytotoxic polycyclic polyprenylated acylphloroglucinol imines from Garcinia yunnanensis. Org. Chem. Front. 8, e65264 (2017).  https://doi.org/10.1039/C7QO00485K Google Scholar
  24. 24.
    G. Baskar, G. Bikku George, M. Chamundeeswari, Synthesis and characterization of Asparaginase bound silver nanocomposite against ovarian cancer cell line A2780 and lung cancer cell line A549. J. Inorg. Organomet. Polym. Mater. 27, 87–94 (2017).  https://doi.org/10.1007/s10904-016-0448-x CrossRefGoogle Scholar
  25. 25.
    A. Ahmad, Y. Wei, F. Syed, M. Imran, Z.U.H. Khan, K. Tahir, A.U. Khan, M. Raza, Q. Khan, Q. Yuan, Size dependent catalytic activities of green synthesized gold nanoparticles and electro-catalytic oxidation of catechol on gold nanoparticles modified electrode. RSC Adv. 5, 99364–99377 (2015).  https://doi.org/10.1039/C5RA20096B CrossRefGoogle Scholar
  26. 26.
    M.V. Mandke, S.-H. Han, H.M. Pathan, Growth of silver dendritic nanostructures via electrochemical route. CrystEngComm 14, 86–89 (2012)  https://doi.org/10.1039/C1CE05791J CrossRefGoogle Scholar
  27. 27.
    S.Y. Lee, S. Krishnamurthy, C.-W. Cho, Y.-S. Yun, Biosynthesis of gold nanoparticles using Ocimum sanctum extracts by solvents with different polarity. ACS Sustain. Chem. Eng. 4, 2651–2659 (2016).  https://doi.org/10.1021/acssuschemeng.6b00161 CrossRefGoogle Scholar
  28. 28.
    S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28 (2016).  https://doi.org/10.1016/j.jare.2015.02.007 CrossRefGoogle Scholar
  29. 29.
    J. Yu, D. Xu, H.N. Guan, C. Wang, L.K. Huang, D.F. Chi, Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater. Lett. 166, 110–112 (2016).  https://doi.org/10.1016/j.matlet.2015.12.031 CrossRefGoogle Scholar
  30. 30.
    W. Ye, Y. Chen, F. Zhou, C. Wang, Y. Li, Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities. J. Mater. Chem. 22, 18327–18334 (2012).  https://doi.org/10.1039/C2JM32170J CrossRefGoogle Scholar
  31. 31.
    M.M.H. Khalil, E.H. Ismail, K.Z. El-Baghdady, D. Mohamed, Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem. 7, 1131–1139 (2014).  https://doi.org/10.1016/j.arabjc.2013.04.007 CrossRefGoogle Scholar
  32. 32.
    N. Aziz, M. Faraz, R. Pandey, M. Shakir, T. Fatma, A. Varma, I. Barman, R. Prasad, Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31, 11605–11612 (2015).  https://doi.org/10.1021/acs.langmuir.5b03081 CrossRefGoogle Scholar
  33. 33.
    P. Kuppusamy, S. Ilavenil, S. Srigopalram, D.H. Kim, N. Govindan, G.P. Maniam, M.M. Yusoff, K.C. Choi, Synthesis of bimetallic nanoparticles (Au–Ag Alloy) using Commelina nudiflora L. plant extract and study its on oral pathogenic bacteria. J. Inorg. Organomet. Polym. Mater. 27, 562–568 (2017).  https://doi.org/10.1007/s10904-017-0498-8 CrossRefGoogle Scholar
  34. 34.
    R.M. Ganesan, H. Gurumallesh Prabu, Synthesis of gold nanoparticles using herbal Acorus calamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications. Arab. J. Chem. (2015).  https://doi.org/10.1016/j.arabjc.2014.12.017 Google Scholar
  35. 35.
    D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, L. Zheng, One-pot synthesis of dendritic gold nnanostructures in aqueous solutions of quaternary ammonium cationic surfactants: effects of the head group and hydrocarbon chain length. ACS Appl. Mater. Interfaces 4, 4665–4671 (2012).  https://doi.org/10.1021/am301040b CrossRefGoogle Scholar
  36. 36.
    J. Xiao, L. Qi, Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 3, 1383–1396 (2011).  https://doi.org/10.1039/C0NR00814A CrossRefGoogle Scholar
  37. 37.
    A. Ahmad, F. Syed, A. Shah, Z. Khan, K. Tahir, A.U. Khan, Q. Yuan, Silver and gold nanoparticles from Sargentodoxa cuneata: Synthesis, characterization and antileishmanial activity. RSC Adv. 5, 73793–73806 (2015).  https://doi.org/10.1039/C5RA13206A CrossRefGoogle Scholar
  38. 38.
    P. Boomi, H.G. Prabu, Synthesis, characterization and antibacterial analysis of polyaniline/Au–Pd nanocomposite. Colloids Surf. A 429, 51–59 (2013).  https://doi.org/10.1016/j.colsurfa.2013.03.053 CrossRefGoogle Scholar
  39. 39.
    J. Zhang, L. Meng, D. Zhao, Z. Fei, Q. Lu, P.J. Dyson, Fabrication of dendritic gold nanoparticles by use of an ionic polymer template. Langmuir 24, 2699–2704 (2008).  https://doi.org/10.1021/la702421z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial Chemistry, School of Chemical SciencesAlagappa UniversityKaraikudiIndia

Personalised recommendations