Advertisement

Preparation and Characterization of Visible-Light Sensitive Nano Ag/Ag3VO4/AgVO3 Modified by Graphene Oxide for Photodegradation of Reactive Orange 16 Dye

  • Behzad Hazizadeh Fard
  • Roya Ranjineh Khojasteh
  • Parvin Gharbani
Article
  • 115 Downloads

Abstract

In this research, nano Ag/Ag3VO4/AgVO3 modified with graphene oxide as a visible-light sensitive photo catalyst was synthesized via a simple method and were investigated for the photo degradation of Reactive Orange 16 dye. The synthesized photo catalysts analyzed by XPS, XRD, FESEM, XPS, EDS, Dot Mapping, TEM, and DRS. The effect of Reactive Orange 16 dye concentration, nano Ag/Ag3VO4/AgVO3 dosage and pH on photodegradation of Reactive Orange 16 were studied in the presence of nano Ag/Ag3VO4/AgVO3 modified with graphene oxide under visible light. Results revealed that increasing of pH, dosage and dye concentration due to a decrease in the photodegradation of dye. The maximum photodegradation of Reactive Orange 16 was 97.43% in the following conditions: dye concentration = 10 mg/L; dosage = 0.1 g/100 mL; pH 6.7 under 300 W of Visible light.

Keywords

Visible light Reactive Orange 16 Graphene oxide Ag/Ag3VO4/AgVO3 

References

  1. 1.
    M. Fathinia, A.R. Khataee, M. Zarei, S. Aber, Comparative photo catalytic degradation of two dyes on immobilized TiO2 nanoparticles: effect of dye molecular structure and response surface approach. J. Mol. Catal. A 333, 73–84 (2010)CrossRefGoogle Scholar
  2. 2.
    J. Wu, H. Zhang, J. Qiu, Degradation of Acid Orange 7 in aqueous solution by a novel electro/Fe2+/peroxydisulfate process. J. Hazard. Mater. 215–216, 138–145 (2012)CrossRefGoogle Scholar
  3. 3.
    R. Cheng, Z. Jiang, S. Ou, Y. Li, B. Xiang, Investigation of acid black1 adsorption onto aminopolysaccharides. Polym. Bull. 62, 69–77 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Ghaderi, S. Abbasi, F. Farahbod, Synthesis of SnO2 and ZnO nanoparticles and SnO2-ZnO hybrid for the photocatalytic oxidation of Methyl Orange. Iran J. Chem. Eng. 12, 96–105 (2015)Google Scholar
  5. 5.
    R. Darvishi Cheshmeh Soltani, A. Rezaei, A.R. Khataee, M. Safari, Photocatalytic process by immobilized carbon black/ZnO nanocomposite for dye removal from aqueous medium: optimization by response surface methodology. J. Ind. Eng. Chem. 20, 1861–1868 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Sheydaei, S. Aber, A.R. Khataee, Degradation of amoxicillin in aqueous solution using nanolepidocrocite chips/H2O2/UV: optimization and kinetics studies. J. Ind. Eng. Chem. 20, 1772–1778 (2014)CrossRefGoogle Scholar
  7. 7.
    A.R. Khataee, M. Fathinia, M. Zarei, B. Izadkhah, S.W. Joo, Modeling and optimization of photocatalytic/photoassisted-electro-Fenton like degradation of phenol using a neural network coupled with genetic algorithm. J. Ind. Eng. Chem. 20, 1852–1860 (2014)CrossRefGoogle Scholar
  8. 8.
    C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, T. Guo, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J. Hazard. Mater. 182, 123–129 (2010)CrossRefGoogle Scholar
  9. 9.
    F. Al-Momani, E. Touraud, J.R. Degorce-Dumas, J. Roussy, O. Thomas, Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis. J. Photochem. Photobiol. A Chem. 153, 191–199 (2002)CrossRefGoogle Scholar
  10. 10.
    A.R. Khataee, M. Fathinia, Y. Hanifehpour, S.W. Joo, Kinetics and mechanism of enhanced photocatalytic activity under Visible light using synthesized PrxCd1–xSe nanoparticles. Ind. Eng. Chem. Res. 52, 13357–13369 (2013)CrossRefGoogle Scholar
  11. 11.
    A.R. Khataee, Y. Hanifehpour, M. Safarpour, M. Hosseini, S. Joo, Synthesis and characterization of Er × Zn1–x Se nanoparticles: a novel visible light responsive photocatalyst. Sci. Adv. Mater. 5, 1074–1082 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Rezaee, H. Masoumbeigi, R. Darvishi Cheshmeh Soltani, A.R. Khataee, S.J. Hashemiyan, Photocatalytic decolorization of methylene blue using immobilized ZnO nanoparticles prepared by solution combustion method. Desalin. Water Treat. 49, 1–3 (2012)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, Y. Li, Q. Zhang, H. Wang, Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced Visible light photocatalytic activity for degradation of organic pollutants. CrystEngComm 15, 5986–5993 (2013)CrossRefGoogle Scholar
  14. 14.
    M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J. Solid. State. Electrochem. 19, 1359–1366 (2015)CrossRefGoogle Scholar
  15. 15.
    M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram. Int. 41, 8735–8741 (2015)CrossRefGoogle Scholar
  16. 16.
    M.M. Momeni, Y. Ghayeb, Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J. Alloys Compd. 637, 393–400 (2015)CrossRefGoogle Scholar
  17. 17.
    M.M. Momeni, Y. Ghayeb, Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J. Appl. Electrochem. 45, 557–566 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Vadivel, M. Vanitha, A. Muthukrishnaraj, N. Balasubramanian, Graphene oxide–BiOBr composite material as highly efficient photocatalyst for degradation of methylene blue and rhodamine-B dyes. J. Water Process. Eng. 1, 17–26 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Fan, X. Zhao, J. Yang, X. Shan, L. Yang, Y. Zhang, X. Li, M. Gao, ZnO–graphene composite for photocatalytic degradation of methylene blue dye. Catal. Commun. 29, 29–34 (2012)CrossRefGoogle Scholar
  20. 20.
    P. Wilhem, D. Stephan, Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. J Photochem. Photobiol. 185, 19–25 (2008)CrossRefGoogle Scholar
  21. 21.
    K.C. Cho, K.C. Hwang, T. Sano, K. Takeuchi, S. Matsuzawa, Photocatalytic performance of Pt-loaded TiO2 in the decomposition of gaseous ozone. J.Photochem. Photobiol. A 161, 155–161 (2004)CrossRefGoogle Scholar
  22. 22.
    A.R. Khataee, M. Safarpour, M. Zarei, S. Aber, Combined heterogeneous and homogeneous photodegradation of a dye using immobilized TiO2 nanophotocatalyst and modified graphite electrode with carbon nanotubes. J. Mol. Catal. A363, 58–68 (2012)CrossRefGoogle Scholar
  23. 23.
    X. An, J.C. Yu, Graphene-based photocatalytic composites. RSC Adv. 1, 1426–1434 (2011)CrossRefGoogle Scholar
  24. 24.
    Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)CrossRefGoogle Scholar
  25. 25.
    N. Raghavan, S. Thangavel, G. Venugopal, Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites. Mater. Sci. Semicond. Process. 30, 321–329 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Wang, J. Liu, L. Liu, D.D. Sun, Enhancing stability and photocatalytic activity of ZnO nanoparticles by surface modification of graphene oxide. J. Nanosci. Nanotechnol. 12, 1–7 (2012)CrossRefGoogle Scholar
  27. 27.
    R.D.C. Soltani, A. Rezaee, A. Khataee, M. Safari, Photocatalytic process by immobilized carbon black/ZnO nanocomposite for dye removal from aqueous medium: optimization by response surface methodology. J. Ind. Eng. Chem. 20, 1861–1868 (2014)CrossRefGoogle Scholar
  28. 28.
    P. Gao, J. Liu, D.D. Sun, W. Ng, Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation. J. Hazard. Mater. 250–251, 412–420 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, Y. Zhu, J. Yu, D. Yang, T.W. Ng, P.K. Wong, J.C. Yu, Enhanced photocatalytic water disinfection properties of Bi2MoO6–RGO nanocomposites under Visible light irradiation. Nanoscale 5, 6307–6310 (2013)CrossRefGoogle Scholar
  30. 30.
    L. Liu, H. Bai, J. Liu, D.D. Sun, Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J. Hazard. Mater. 261, 214–223 (2013)CrossRefGoogle Scholar
  31. 31.
    P. Gao, K. Ng, D.D. Sun, Sulfonated graphene oxide–ZnO–Ag photocatalyst for fast photodegradation and disinfection under Vis light. J. Hazard. Mater. 262, 826–835 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Kumar, R. Nair, P. Pillai, S. Gupta, M. Iyengar, A. Sood, Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces 6, 17426–17436 (2014)CrossRefGoogle Scholar
  33. 33.
    Y. Liu, X. Jiang, B. Li, X. Zhang, T. Liu, X. Yan, J. Ding, Q. Caib, J. Zhang, Halloysite nanotubes@reduced graphene oxide composite for removal of dyes from water and as supercapacitors. J. Mater. Chem. A 2, 4264–4269 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C112, 8192–8195 (2008)CrossRefGoogle Scholar
  35. 35.
    R. Dinnebier, A. Kowalevskyy, H. Reichert, M. Jansen, Polymorphism of Ag3VO4. Z. Kristallogr. 222, 420–426 (2007)CrossRefGoogle Scholar
  36. 36.
    R. Ran, X. Meng, Z. Zhang, Facile preparation of novel graphene oxide-modified Ag2O/Ag3VO4/AgVO3 composites with high photocatalytic activities under visible light irradiation. Appl. Catal. B 196, 1–15 (2016)CrossRefGoogle Scholar
  37. 37.
    G.T. Pan, M.H. Lai, R.C. Juang, T.W. Chung, T.C.K. Yang, Preparation of visible-light-driven silver vanadates by a microwave-assisted hydrothermal method for the photodegradation of volatile organic vapors. Ind. Eng. Chem. Res. 50, 2807–2814 (2011)CrossRefGoogle Scholar
  38. 38.
    W.S. Wang, H. Du, R.X. Wang, T. Wen, A.W. Xu, Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light. Nanoscale 5, 3315–3321 (2013)CrossRefGoogle Scholar
  39. 39.
    D. Courcot, A. Ponchel, B. Grzybowska, Y. Barbaux, M. Rigole, M. Guelton, J.P. Bonnelle, Effect of the sequence of potassium introduction to V2O5/TiO2 catalysts on their physicochemical properties and catalytic performance in oxidative dehydrogenation of propane. Catal. Today 33, 109–118 (1997)CrossRefGoogle Scholar
  40. 40.
    H. Zhang, X. Fan, X. Quan, S. Chen, H. Yu, Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under vis light. Environ. Sci. Technol. 45, 5731–5736 (2011)CrossRefGoogle Scholar
  41. 41.
    C. Dong, K.L. Wu, X.W. Wei, X.Z. Li, L. Liu, T.H. Ding, J. Wang, Y. Ye, Synthesis of graphene oxide–Ag2CO3 composites with improved photoactivity and anti-photocorrosion. CrystEngComm 16, 730–736 (2014)CrossRefGoogle Scholar
  42. 42.
    R. Arrayo, G. Codoba, J. Padilla, V.H. Lara, Influence of manganese ions on the anatase–rutile phase transition of TiO2 prepared by the sol–gel process. Mater. Lett. 54, 397–402 (2002)CrossRefGoogle Scholar
  43. 43.
    H. Jun, B. Im, J.Y. Kim, Y.O. Im, J.W. Jang, E.S. Kim, J.Y. Kim, H.J. Kang, S.J. Hong, J.S. Lee, Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding. Energy Environ. Sci. 5, 6375–6382 (2012)CrossRefGoogle Scholar
  44. 44.
    ShifuC,WeiZ,WeiL,SujuanZ.2008.Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO2. Appl. Surf. Sci. 225:2478–2484.Google Scholar
  45. 45.
    C. Ling, A. Mohamed, S. Bahatia, Photo degradation of methylene blue dye in aqueous stream. J. Teknol. 40, 91–103 (2004)Google Scholar
  46. 46.
    S. Chakrabarti, B.K. Dutta, Photo catalytic degradation of model textile dyes in wastewater using Zno as semiconductor catalyst. J. Hazard. Mater. 112, 269–278 (2004)CrossRefGoogle Scholar
  47. 47.
    M.S.T. Concalves, A.M.F. Oliveira-Campos, M.M.S. Pinto, P.M.S. Plasencia, M.J.R.P. Queiroz, Photochemical treatment of solutions of azo dyes containing TiO2. J. Chemosphere 39, 781–786 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of Chemistry, Tehran North BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Inorganic Chemistry, Faculty of Chemistry, Tehran North BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Chemistry, Ahar BranchIslamic Azad UniversityAharIran

Personalised recommendations