Advertisement

Novel Semi Crystalline, Soluble and Magnetic Poly(imide-ether)/Zeolite Nanocomposites: Synthesis, Characterization and Computational Study

  • Zahra Mobaraki
  • Hassan Moghanian
  • Khalil Faghihi
  • Meisam Shabanian
Article

Abstract

In this research new magnetic and semi crystalline poly(imide-ether)/zeolite nanocomposites were successfully fabricated via solution intercalation technique. For this purpose, novel functional diamine monomer, 4-(bis (4-(4-aminophenoxy)-2,5-dimethylphenyl) methyl)-N,N-dimethylbenzenamine (5), containing flexible ether, methyl and dimethylamino groups was successfully synthesized via three step reactions. The synthesized diamine (5), was used to prepare related soluble aromatic poly(imide-ether) (PIE) as a source of polymeric matrix by reaction with benzophenone-3,3′,4,4′-tetracarboxylic dianhydride. The synthesized PIE was assessed by Fourier transform infrared and nuclear magnetic resonance (1H-NMR) techniques. The synthesized PIE revealed good solubility in dipolar aprotic solvents at room temperature. The molecular geometry and electronic properties of PIE units in the ground state by DFT and B3LYP method with 6-31G (d) as basis set were studied. Due to incorporation of N,N-dimethyl amino group as an electron donor on the benzene ring in the structure of PIE, the highest occupied molecular orbitals (HOMO) are localized mainly on N,N-dimethyl aniline. The calculated energy values of HOMO and LUMO were − 5.48 and − 3.02 eV, respectively. Also, the HOMO–LUMO gap value of the studied PIE is − 2.06 eV which show PIE units having a small energy gap and are known as soft molecule. Nanozeolites ZSM-5 which synthesized from hydrothermal treatment was magnetized via chemical co-precipitation and used for preparation of new poly(imide-ether)/zeolite nanocomposites (PIEN 3% and PIEN 5%). The nanostructure and different properties of the nanocomposites were examined using transmission electron microscope, X-ray diffraction (XRD), ultraviolet–visible, gravimetric analysis (TGA), derivative of thermogravimetric, differential scanning calorimetry and vibrating sample magnetometer. The results of XRD studies illustrated that novel synthesized PIE and their nanocomposites exhibited a semi crystallinly pattern in X-ray diffraction analysis. The crystalline morphology of samples might be because of chain packaging of PIE and good intermolecular interaction of polymer chains due to presence of N,N-dimethylamine. In examining the optical properties, it has been observed that by increasing the concentration of the nanoparticle, PIEN 3% and PIEN 5% nanocomposites show decrease in wavelength and have a blue shift of 14 and 24 nm, respectively compared to pure PIE. Also, the PIEN nanocomposites under applied magnetic field exhibited the hysteretic loops of the superparamagnetic nature. Results of TGA measurement have shown that addition of MNZ-Fe3O4@ZSM-5 in PIE matrix increased the thermal stability, compared to the neat PIE. With increasing the content of MNZ-Fe3O4@ZSM-5 to 5 wt% due to agglomeration of nanoparticles T10% decreased slightly. The glass transition temperatures (Tg) of the PIE and their nanocomposites were about 240–255 °C. Briefly, the PIE and their nanocomposites showed high thermal stability while their solubility was improved. These properties will be useful for processing and new applications of poly(imide-ether).

Keywords

poly(imide-ether) (PIE) Magnetic nanocomposites Dimethyl amino group Magnetic zeolite 

References

  1. 1.
    H.H. Yang, Aromatic High-Strength Fibers (Wiley, New York, 1989)Google Scholar
  2. 2.
    B. Rubehn, T. Stieglitz, Biomaterials 31, 3449–3458 (2010)CrossRefGoogle Scholar
  3. 3.
    L. Li, C. Guan, A. Zhang, D. Chen, Z. Qing, Polym. Degrad. Stab. 84, 369–373 (2004)CrossRefGoogle Scholar
  4. 4.
    C.P. Yang, G.S. Liou, S.H. Jeng, R.S. Chen, J. Appl. Polym. Sci. 86, 2763–2774 (2002)CrossRefGoogle Scholar
  5. 5.
    M.I. Sarwar, S. Zulfiqar, Z. Ahmad, Polym. Int. 57, 292–296 (2008)CrossRefGoogle Scholar
  6. 6.
    N.V. Sadavarte, C. Avadhani, P.P. Wadgaonkar, High Perform. Polym. 23, 494–505 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Thiruvasagam, B. Saritha, N. Hari, High Perform. Polym. 28, 660–668 (2016)CrossRefGoogle Scholar
  8. 8.
    B.V. Tawade, A.D. Kulkarni, P.P. Wadgaonkar, Polym. Int. 64, 1770–1778 (2015)CrossRefGoogle Scholar
  9. 9.
    D.-J. Liaw, B.-Y. Liaw, M.-Q. Jeng, Polymer 39, 1597–1607 (1998)CrossRefGoogle Scholar
  10. 10.
    F. Li, S. Fang, J.J. Ge, P.S. Honigfort, J.-C. Chen, F.W. Harris, S.Z. Cheng, Polymer 40, 4571–4583 (1999)CrossRefGoogle Scholar
  11. 11.
    P. Thiruvasagam, Des. Monomers Polym. 17, 166–175 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Moghanian, S. Ebrahimi, A. Mohamadi, Arab. J. Sci. Eng. 38, 1721–1729 (2013)CrossRefGoogle Scholar
  13. 13.
    K. Faghihi, H. Moghanian, Chin. J. Polym. Sci. 28, 695–704 (2010)CrossRefGoogle Scholar
  14. 14.
    T.J. Dingemans, E. Mendes, J.J. Hinkley, E.S. Weiser, T.L. StClair, Macromolecules 41, 2474–2483 (2008)CrossRefGoogle Scholar
  15. 15.
    D.-J. Liaw, B.-Y. Liaw, C.-W. Yu, Polymer 42, 5175–5179 (2001)CrossRefGoogle Scholar
  16. 16.
    C.-P. Yang, Y.-Y. Su, S.-J. Wen, S.-H. Hsiao, Polymer 47, 7021–7033 (2006)CrossRefGoogle Scholar
  17. 17.
    D. Paul, L.M. Robeson, Polymer 49, 3187–3204 (2008)CrossRefGoogle Scholar
  18. 18.
    L.J. Lee, C. Zeng, X. Cao, X. Han, J. Shen, G. Xu, Compos. Sci. Technol. 65, 2344–2363 (2005)CrossRefGoogle Scholar
  19. 19.
    J. Wen, G.L. Wilkes, Chem. Mater. 8, 1667–1668 (1996)CrossRefGoogle Scholar
  20. 20.
    I. Honma, H. Nakajima, O. Nishikawa, T. Sugimoto, S. Nomura, Solid State Ionics 162, 237–245 (2003)CrossRefGoogle Scholar
  21. 21.
    Y.-Y. Yu, W.-C. Chien, S.-Y. Chen, J. Nanosci. Nanotechnol. 9, 4040–4047 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Shabanian, H. Ardeshir, S. Haji-Ali, H. Moghanian, M. Hajibeygi, K. Faghihi, H.A. Khonakdar, H. Salimi, Appl. Clay Sci. 123, 285–291 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Uchida, R. Ishige, S. Ando, Polymers 9, 263 (2017)CrossRefGoogle Scholar
  24. 24.
    D.R. Son, A.V. Raghu, K.R. Reddy, H.M. Jeong, J. Macromol. Sci. B 55, 1099–1110 (2016)CrossRefGoogle Scholar
  25. 25.
    K.R. Reddy, K.-P. Lee, A.I. Gopalan, J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)CrossRefGoogle Scholar
  26. 26.
    S.J. Han, H.-I. Lee, H.M. Jeong, B.K. Kim, A.V. Raghu, K.R. Reddy, J. Macromol. Sci. B 53, 1193–1204 (2014)CrossRefGoogle Scholar
  27. 27.
    Y.R. Lee, S.C. Kim, H. Lee, H.M. Jeong, A.V. Raghu, K.R. Reddy, B.K. Kim, Macromol. Res. 19, 66–71 (2011)CrossRefGoogle Scholar
  28. 28.
    K.R. Reddy, B.C. Sin, K.S. Ryu, J.-C. Kim, H. Chung, Y. Lee, Synth. Met. 159, 595–603 (2009)CrossRefGoogle Scholar
  29. 29.
    K.R. Reddy, K. Karthik, S.B. Prasad, S.K. Soni, H.M. Jeong, A.V. Raghu, Polyhedron 120, 169–174 (2016)CrossRefGoogle Scholar
  30. 30.
    S.H. Choi, D.H. Kim, A.V. Raghu, K.R. Reddy, H.-I. Lee, K.S. Yoon, H.M. Jeong, B.K. Kim, J. Macromol. Sci. B 51, 197–207 (2012)CrossRefGoogle Scholar
  31. 31.
    K.R. Reddy, K.-P. Lee, Y. Lee, A.I. Gopalan, Mater. Lett. 62, 1815–1818 (2008)CrossRefGoogle Scholar
  32. 32.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, J. Appl. Polym. Sci. 106, 1181–1191 (2007)CrossRefGoogle Scholar
  33. 33.
    M.U. Khan, K.R. Reddy, T. Snguanwongchai, E. Haque, V.G. Gomes, Colloid Polym. Sci. 294, 1599–1610 (2016)CrossRefGoogle Scholar
  34. 34.
    H. Kikura, Y. Takeda, F. Durst, Exp. Fluids 26, 208–214 (1999)CrossRefGoogle Scholar
  35. 35.
    Y. Zhu, Y. Fang, S. Kaskel, J. Phys. Chem. C. 114, 16382–16388 (2010)CrossRefGoogle Scholar
  36. 36.
    J. Bao, W. Chen, T. Liu, Y. Zhu, P. Jin, L. Wang, J. Liu, Y. Wei, Y. Li, Acs Nano 1, 293–298 (2007)CrossRefGoogle Scholar
  37. 37.
    C.S. Gill, B.A. Price, C.W. Jones, J. Catal. 251, 145–152 (2007)CrossRefGoogle Scholar
  38. 38.
    L. Nicolais, G. Carotenuto, Metal-Polymer Nanocomposites (Wiley, New York, 2004)CrossRefGoogle Scholar
  39. 39.
    M. Shabanian, Z. Mirzakhanian, H. Moghanian, M. Hajibeygi, H. Salimi, H.A. Khonakdar, J. Therm. Anal. Calorim. 129, 147–159 (2017)CrossRefGoogle Scholar
  40. 40.
    M. Shabanian, H. Moghanian, M. Khaleghi, M. Hajibeygi, H.A. Khonakdar, H. Vahabi, RSC Adv. 6, 112568–112575 (2016)CrossRefGoogle Scholar
  41. 41.
    H. Moghanian, A. Mobinikhaledi, R. Monjezi, Des. Monomers Polym. 18, 157–169 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Shaker, S. Zafarian, S. Chakra, K.V. Rao, K. Badii, A. Aftabtalab, H. Sadabadi, in Advanced Materials Research (Trans Tech Publications, 2014), pp. 808–812Google Scholar
  43. 43.
    F. Iskandar, P. Fitriani, S. Merissa, R.R. Mukti, M. Khairurrijal, H. Abdullah, W. Setyawan, S. Widiyastuti, Machmudah, in AIP Conference Proceedings, AIP, 2014, pp. 132–135Google Scholar
  44. 44.
    P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Sep. Purif. Technol. 81, 243–264 (2011)CrossRefGoogle Scholar
  45. 45.
    D. Bastani, N. Esmaeili, M. Asadollahi, J. Ind. Eng. Chem. 19, 375–393 (2013)CrossRefGoogle Scholar
  46. 46.
    R.J. Argauer, G.R. Landolt, in Google Patents, 1972Google Scholar
  47. 47.
    M. Jayamurthy, S. Vasudevan, Catal. Lett. 36, 111–114 (1996)CrossRefGoogle Scholar
  48. 48.
    W. Vermeiren, J.-P. Gilson, Top. Catal. 52, 1131–1161 (2009)CrossRefGoogle Scholar
  49. 49.
    D.W. Shin, S.H. Hyun, C.H. Cho, M.H. Han, Microporous Mesoporous Mater. 85, 313–323 (2005)CrossRefGoogle Scholar
  50. 50.
    S.N. Mirzababaei, M. Taghizadeh, E. Alizadeh, Des. Water Treat. 57, 12204–12215 (2016)CrossRefGoogle Scholar
  51. 51.
    X. Wang, D. Shao, G. Hou, X. Wang, A. Alsaedi, B. Ahmad, J. Mol. Liq. 207, 338–342 (2015)CrossRefGoogle Scholar
  52. 52.
    G. Ciobanu, G. Carja, O. Ciobanu, Mater. Sci. Eng. C. 27, 1138–1140 (2007)CrossRefGoogle Scholar
  53. 53.
    S. Husain, W.J. Koros, J. Membr. Sci. 288, 195–207 (2007)CrossRefGoogle Scholar
  54. 54.
    T.W. Pechar, S. Kim, B. Vaughan, E. Marand, M. Tsapatsis, H.K. Jeong, C.J. Cornelius, J. Membr. Sci. 277, 195–202 (2006)CrossRefGoogle Scholar
  55. 55.
    T. Khosravi, S. Mosleh, O. Bakhtiari, T. Mohammadi, Chem. Eng. Res. Des. 90, 2353–2363 (2012)CrossRefGoogle Scholar
  56. 56.
    F. Dorosti, M. Omidkhah, R. Abedini, J. Nat. Gas Sci. Eng. 25, 88–102 (2015)CrossRefGoogle Scholar
  57. 57.
    L. Lin, A. Wang, M. Dong, Y. Zhang, B. He, H. Li, J. Hazard. Mater. 203, 204–212 (2012)CrossRefGoogle Scholar
  58. 58.
    R. Shindo, M. Kishida, H. Sawa, T. Kidesaki, S. Sato, S. Kanehashi, K. Nagai, J. Membr. Sci. 454, 330–338 (2014)CrossRefGoogle Scholar
  59. 59.
    K. Parvin, J. Ma, J. Ly, X. Sun, D. Nikles, K. Sun, L. Wang, J. Appl. Phys. 95, 7121–7123 (2004)CrossRefGoogle Scholar
  60. 60.
    T.S. El-Din, A.A. Elzatahry, D.M. Aldhayan, A.M. Al-Enizi, S.S. Al-Deyab, Int. J. Electrochem. Sci. 6, 6177–6183 (2011)Google Scholar
  61. 61.
    S.K.H. Nejad-Darzi, A. Samadi-Maybodi, M. Ghobakhluo, J. Porous Mater. 20, 909–916 (2013)CrossRefGoogle Scholar
  62. 62.
    A. Mobinikhaledi, H. Moghanian, M. Deinavizadeh, Comptes rendus Chimie. 16, 1035–1041 (2013)CrossRefGoogle Scholar
  63. 63.
    H. Jahangirian, M. Shah Ismail, M.J. Haron, R. Rafiee-Moghaddam, K. Shameli, S. Hosseini, K. Kalantari, R. Khandanlou, E. Gharibshahi, S. Soltaninejad, Dig. J. Nanomater. Bios. 4, 4 (2013)Google Scholar
  64. 64.
    L. Shirazi, E. Jamshidi, M. Ghasemi, Cryst. Res. Technol. 43, 1300–1306 (2008)CrossRefGoogle Scholar
  65. 65.
    C.E. Kirschhock, R. Ravishankar, F. Verspeurt, P.J. Grobet, P.A. Jacobs, J.A. Martens, J. Phys. Chem. B. 103, 4965–4971 (1999)CrossRefGoogle Scholar
  66. 66.
    D. Xu, S. Che, O. Terasaki, New J. Chem. 40, 3982–3992 (2016)CrossRefGoogle Scholar
  67. 67.
    H. Moghanian, A. Mobinikhaledi, R. Monjezi, J. Mol. Struct. 1052, 135–145 (2013)CrossRefGoogle Scholar
  68. 68.
    R.G. Pearson, Proc. Natl. Acad. Sci. USA 83:8440–8441 (1986)CrossRefGoogle Scholar
  69. 69.
    S. Sagdinc, H. Pir, Spectrochim. Acta A 73, 181–194 (2009)CrossRefGoogle Scholar
  70. 70.
    T. Lee, F. Boey, K. Khor, Polym. Compos. 16, 481–488 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Faculty of ScienceArak UniversityArakIran
  2. 2.Department of Chemistry, Dezful BranchIslamic Azad UniversityDezfulIran
  3. 3.Faculty of Chemistry and Petrochemical EngineeringStandard Research Institute (SRI)KarajIran

Personalised recommendations