Syntheses and Properties of Two New Multi-functional Cobalt(II) Complexes Derived from Two Different Semi-rigid Bis(pyridyl)–Bis(amide) Ligands

  • HongYan Lin
  • Jing Zhao
  • Yuan Tian
  • Xiang Wang
  • GuoCheng Liu


Two new cobalt(II) complexes with the formulas of [Co(3-ebpba)(Hcppa)]n (1) and [Co(3-bpcd)(Hcppa)]n (2) have been obtained under the solvothermal conditions by reacting of two semi-rigid bis(pyridyl)–bis(amide) ligands with different spacers [3-ebpba = (E)-4,4′-(ethene-1,2-diyl)bis(N-pyridin-3-yl)benzamide, 3-bpcd = N,N′-bis(pyridin-3-yl)cyclohexane-1,4-dicarboxamide] and the aromatic tricarboxylic acid [H3cppa = 5-(4-carboxyl-phenoxy)-isophthalic acid]. Complex 1 represents a 2D polymeric layer constructed by the 1D [Co(Hcppa)]n ‘chinese knot’-shaped chains and µ2-bridging 3-ebpba ligands. Complex 2 is a 1D ribbon chain based on the 1D [Co(Hcppa)]n ‘comb’-liked chains and the bidentate 3-bpcd ligands. Finally, the adjacent 2D layers or 1D chains are extended to 3D supramolecular networks via hydrogen-bonding interactions for the title complexes. In addition, the electrochemical behaviors, fluorescent properties and the photocatalytic activities of two cobalt(II) complexes towards the degradation of organic dyes have been studied.


Cobalt(II) complex Bis(pyridyl)–bis(amide) ligand Tricarboxylate Fluorescent properties Photocatalytic activity 



The supports of the National Natural Science Foundation of China (No. 21501013, 21401010) and Program for Distinguished Professor of Liaoning Province (No. 2015399) are gratefully acknowledged.

Supplementary material

10904_2018_786_MOESM1_ESM.doc (3.4 mb)
Supplementary material 1 (DOC 3482 KB)
10904_2018_786_MOESM2_ESM.pdf (400 kb)
Supplementary material 2 (PDF 399 KB)


  1. 1.
    H.C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112, 673 (2012)CrossRefGoogle Scholar
  2. 2.
    J.R. Li, J. Sculley, H.C. Zhou, Chem. Rev. 112, 869 (2012)CrossRefGoogle Scholar
  3. 3.
    W.W. Xiong, J.W. Miao, K.Q. Ye, Y. Wang, B. Liu, Q.C. Zhang, Angew. Chem. Int. Ed. 54, 546 (2015)Google Scholar
  4. 4.
    J.S. Qin, S.R. Zhang, D.Y. Du, P. Shen, S.J. Bao, Y.Q. Lan, Z.M. Su, Chem. Eur. J. 20, 5625 (2014)CrossRefGoogle Scholar
  5. 5.
    N.C. Galve, M.G. Marqués, M. Palomino, S. Valencia, F. Rey, G.M. Espallargas, E. Coronado, Inorg. Chem. Front. 3, 808 (2016)CrossRefGoogle Scholar
  6. 6.
    K.B. Thapa, J. Chen, CrystEngComm. 17, 4611 (2015)CrossRefGoogle Scholar
  7. 7.
    H.Y. Lin, J. Luan, X.L. Wang, J.W. Zhang, G.C. Liu, A.X. Tian, RSC Adv. 4, 62430 (2014)CrossRefGoogle Scholar
  8. 8.
    X.L. Qu, D. Gui, X.L. Zheng, R. Li, H.L. Han, X. Li, P.Z. Li, Dalton Trans. 45, 6983 (2016)CrossRefGoogle Scholar
  9. 9.
    C.H. Zhang, L.B. Sun, C.Q. Zhang, S. Wan, Z.Q. Liang, J.Y. Li, Inorg. Chem. Front. 3, 814 (2016)CrossRefGoogle Scholar
  10. 10.
    W. Yan, H. Hao, H.G. Zheng, Dalton Trans. 45, 6418 (2016)CrossRefGoogle Scholar
  11. 11.
    T.L. Hu, Y. Tao, Z. Chang, X.H. Bu, Inorg. Chem. 50, 10994 (2011)CrossRefGoogle Scholar
  12. 12.
    S.H. Wang, L. Liu, S.M. Wang, Z.B. Han, Inorg Chem. Front. 4, 1231 (2017)CrossRefGoogle Scholar
  13. 13.
    H.Y. Lin, X.Z. Zhao, L. Zeng, Q.L. Wang, X.L. Wang, G.C. Liu, Aust. J. Chem. 68, 1550 (2015)CrossRefGoogle Scholar
  14. 14.
    H.Y. Lin, F.F. Sui, P. Liu, X.L. Wang, G.C. Liu, Bull. Korean Chem. Soc. 34, 2138 (2013)CrossRefGoogle Scholar
  15. 15.
    H.Y. Lin, F.F. Sui, G.C. Liu, X. Wang, P.W. Chen, J. Chem. Sci. 129, 9 (2017)CrossRefGoogle Scholar
  16. 16.
    H.Y. Lin, X. Rong, G.C. Liu, X. Wang, X.L. Wang, S.R. Duan, J. Mol. Struct. 1119, 396 (2016)CrossRefGoogle Scholar
  17. 17.
    X.L. Wang, B. Mu, H.Y. Lin, S. Yang, G.C. Liu, A.X. Tian, J.W. Zhang, Sci. China Chem. 56, 557 (2013)CrossRefGoogle Scholar
  18. 18.
    X.L. Wang, B. Mu, H.Y. Lin, S. Yang, G.C. Liu, A.X. Tian, J.W. Zhang, Dalton Trans. 41, 11074 (2012)CrossRefGoogle Scholar
  19. 19.
    X.L. Wang, M. Le, H.Y. Lin, Q.L. Luan, G.C. Liu, D.N. Liu, Dalton Trans. 44, 14008 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Rajput, K. Biradha, CrystEngComm. 11, 1220 (2009)CrossRefGoogle Scholar
  21. 21.
    D.K. Kumar, A. Das, P. Dastidar, Cryst. Growth. Des. 6, 1903 (2006)CrossRefGoogle Scholar
  22. 22.
    Y. Gong, J. Li, J.B. Qin, T. Wu, R. Cao, J.H. Li, Cryst. Growth Des. 11, 1662 (2011)CrossRefGoogle Scholar
  23. 23.
    P.C. Cheng, P.T. Kuo, M.Y. Xie, W. Hsu, J.D. Chen, CrystEngComm. 15, 6264 (2013)CrossRefGoogle Scholar
  24. 24.
    X.L. Wang, J. Luan, H.Y. Lin, Q.L. Lu, M. Le, G.C. Liu, J.Y. Shao, ChemPlusChem. 79, 1691 (2014)CrossRefGoogle Scholar
  25. 25.
    Y.J. Cui, Y.F. Yue, G.D. Qian, B.L. Chen, Chem. Rev. 112, 1126 (2012)CrossRefGoogle Scholar
  26. 26.
    T.V. Mitkina, N.F. Zakharchuk, D.Y. Naumov, O.A. Gerasko, D. Fenske, V.P. Fedin, Inorg. Chem. 47, 6748 (2008)CrossRefGoogle Scholar
  27. 27.
    L.L. Liu, J.J. Huang, J.W. Zhang, G.C. Liu, X.L. Wang, H.Y. Lin, N.L. Chen, Y. Qu, Transit. Met. Chem. 38, 689 (2013)CrossRefGoogle Scholar
  28. 28.
    X.X. Xu, Z.P. Cui, J. Qi, X.X. Liu, Dalton Trans. 42, 13546 (2013)CrossRefGoogle Scholar
  29. 29.
    L.X. Hu, M.Y. Gao, T. Wen, Y. Kang, S.M. Chen, Inorg. Chem. 56, 6507 (2017)CrossRefGoogle Scholar
  30. 30.
    Y.Q. Chen, Y. Tian, D.L. An, J. Coord. Chem. 70, 168 (2017)CrossRefGoogle Scholar
  31. 31.
    X.X. Xu, Z.P. Cui, J. Qi, X.X. Liu, Dalton Trans. 42, 4031 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryBohai UniversityJinzhouPeople’s Republic of China

Personalised recommendations