Crystallization of Two 1-D Coordination Polymers Building by 5-Sulfoisophthalic Acid and Lanthanide Ions by Partial Hydrolysis of Collagen

  • Chris H. J. Franco
  • Renata C. Aglio
  • Thamyres G. de Almeida
  • Renata Diniz


This paper intends to show how to use collagen to assist in obtaining single crystals of small molecules of two one-dimensional coordination polymers built by 5-sulfoisophthalic acid and lanthanide ions. The crystals were grown at room temperature and crystalline forms appeared into viscous solution exhibiting well-shaped faces and large volumes with small amount of samples. The use of collagen in the system prevents the formation of precipitate, an advantage when compared to many crystals obtained in pure solution. The samples, Nd(5SIS)·(DMF)2·5H2O (1) and [La(5sis)·8H2O] (2), have been prepared and characterized by single-crystal X-ray diffraction and vibrational spectroscopic (Raman and FT-IR) analyses. The results have shown that the compounds belong to the monoclinic system and it is stabilized by a complex hydrogen bonds network. Coordination environment of metals tend to have more ionic character in their bonds. The advantages and limitations of the use of collagen in small molecule crystallization have also been discussed.


Crystal structure Coordination polymer Crystallization method Ionic interaction Lanthanide ions 



The authors would like to thank the Brazilian agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo a Pesquisa em Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Financiadora de Estudos e Projetos (FINEP) for financial support and Instituto Federal Sudeste de Minas Gerais – Campos Juiz de Fora for providing facilities of spectroscopic measures.

Supplementary material

10904_2018_784_MOESM1_ESM.docx (237 kb)
Supplementary material 1 (DOCX 236 KB)


  1. 1.
    A. Khutia, C. Janiak, Dalton Trans. 43(3), 1338 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Deng, Y. Zhao, P. Wang, Z.-Y. Yao, X.-D. Zhang, W.-Y. Sun, Micropor. Mesopor. Mat. 241, 192 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Duan, W. Jin, S. Kitagawa, Coord. Chem. Rev. 332, 48 (2017)CrossRefGoogle Scholar
  4. 4.
    L.J. Murray, M. Dinca, J.R. Long, Chem. Soc. Rev. 38(5), 1294 (2009)CrossRefGoogle Scholar
  5. 5.
    J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38(5), 1477 (2009)CrossRefGoogle Scholar
  6. 6.
    W.P. Barros, M. Luisa Calatayud, F. Lloret, M. Julve, N. Marino, G. De Munno, H.O. Stumpf, R. Ruiz-Garcia, I. Castro, CrystEngComm 18(3), 437 (2016)CrossRefGoogle Scholar
  7. 7.
    X.-H. Chang, J.-H. Qin, L.-F. Ma, L.-Y. Wang, J. Solid State Chem. 212, 121 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 43(16), 6011 (2014)CrossRefGoogle Scholar
  9. 9.
    O.A. Kholdeeva, Catal Today 278(Part 1), 22 (2016)CrossRefGoogle Scholar
  10. 10.
    D. Chen, F. Liang, D. Feng, M. Xian, H. Zhang, H. Liu, F. Du, Chem. Eng. J. 300, 177 (2016)CrossRefGoogle Scholar
  11. 11.
    D.-L. An, S. Gao, Z.-B. Zhu, L.-H. Huo, H. Zhao, Acta Crystallogr. E 60(1), m111 (2004)CrossRefGoogle Scholar
  12. 12.
    Y. Bu, F. Jiang, S. Zhang, J. Ma, X. Li, M. Hong, CrystEngComm 13(21), 6323 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Cai, Coord. Chem. Rev. 248(11–12), 1061 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Cai, C.-H. Chen, C.-Z. Liao, X.-L. Feng, X.-M. Chen, Acta Crystallogr. B 57(4), 520 (2001)CrossRefGoogle Scholar
  15. 15.
    L.H. Chagas, J. Janczak, F.S. Gomes, N.G. Fernandes, L.F.C. de Oliveira, R. Diniz, J. Mol. Struct. 892(1–3), 305 (2008)CrossRefGoogle Scholar
  16. 16.
    L.-H. Huo, S. Gao, S.-X. Xu, H. Zhao, Acta Crystallogr. E 61(3), m449 (2005)CrossRefGoogle Scholar
  17. 17.
    C.-S. Liu, J.-R. Li, C.-Y. Li, J.-J. Wang, X.-H. Bu, Inorg. Chim. Acta 360(8), 2532 (2007)CrossRefGoogle Scholar
  18. 18.
    X.-H. Miao, L.-G. Zhu, J. Mol. Struct. 877(1–3), 123 (2008)CrossRefGoogle Scholar
  19. 19.
    X.-H. Miao, L.-G. Zhu, New J. Chem. 34(11), 2403 (2010)CrossRefGoogle Scholar
  20. 20.
    W.-G. Wang, J. Zhang, Z.-F. Ju, L.-J. Song, Appl. Organomet. Chem. 19(1), 191 (2005)CrossRefGoogle Scholar
  21. 21.
    H.-P. Xiao, Acta Crystallogr. E 62(1), m95 (2006)CrossRefGoogle Scholar
  22. 22.
    X.-H. Miao, L.-G. Zhu, J. Mol. Struct. 931(1–3), 1 (2009)Google Scholar
  23. 23.
    X.-H. Miao, L.-G. Zhu, Inorg. Chim Acta 365(1), 419 (2011)CrossRefGoogle Scholar
  24. 24.
    G.K.H. Shimizu, R. Vaidhyanathan, J.M. Taylor, Chem. Soc. Rev. 38(5), 1430 (2009)CrossRefGoogle Scholar
  25. 25.
    R.G. Pearson, Coord. Chem. Rev. 100, 403–425 (1990)CrossRefGoogle Scholar
  26. 26.
    R.G. Pearson, J. Chem. Educ. 45(9), 581 (1968)CrossRefGoogle Scholar
  27. 27.
    R.G. Pearson, J. Am. Chem. Soc. 85(22), 3533 (1963)CrossRefGoogle Scholar
  28. 28.
    S.R. Batten, M. Suzanne, D.R. Neville, Turner, Coordination Polymers, 1st edn. (Cambridge, UK, 2009), pp. 144–237Google Scholar
  29. 29.
    N.N.,A. Greenwood, Earnshaw, Chemistry of the Elements, 2nd edn. (Oxford, 1997), pp. 1227–1249Google Scholar
  30. 30.
    X.-Q. Zhao, B. Zhao, Y. Ma, W. Shi, P. Cheng, Z.-H. Jiang, D.-Z. Liao, S.-P. Yan, Inorg. Chem. 46(15), 5832 (2007)CrossRefGoogle Scholar
  31. 31.
    Q. Yue, J. Yang, G.-H. Li, G.-D. Li, W. Xu, J.-S. Chen, S.-N. Wang, Inorg. Chem. 44(15), 5241 (2005)CrossRefGoogle Scholar
  32. 32.
    X.-H. Zhou, Y.-H. Peng, X.-D. Du, C.-F. Wang, J.-L. Zuo, X.-Z. You, Cryst. Growth Des. 9(2), 1028 (2009)CrossRefGoogle Scholar
  33. 33.
    Y.-L. Ma, L. Du, Q.-H. Zhao, Inorg. Chem. Commun. 77, 1 (2017)CrossRefGoogle Scholar
  34. 34.
    X. Liu, M.A. Siegler, M. Hilbers, E. Bouwman, Polyhedron 123, 1 (2017)CrossRefGoogle Scholar
  35. 35.
    B. Li, H.-M. Wen, Y. Cui, G. Qian, B. Chen, Prog. Polym. Sci. 48, 40 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Roy, A. Chakraborty, T.K. Maji, Coord. Chem. Rev. 273–274, 139 (2014)CrossRefGoogle Scholar
  37. 37.
    R. Si, J. Liu, K. Yang, X. Chen, W. Dai, X. Fu, J. Catal. 311, 71 (2014)CrossRefGoogle Scholar
  38. 38.
    R. Yang, S.-L. Cai, Z.-Z. Wen, X.-L. Wen, S.-R. Zheng, Inorg. Chem. Commun. 46, 98 (2014)CrossRefGoogle Scholar
  39. 39.
    R. Cudney, S. Patel, A. McPherson, Acta Crystallogr. D 50(4), 479 (1994)CrossRefGoogle Scholar
  40. 40.
    A. Moreno, E. Saridakis, N.E. Chayen, J. Appl. Crystallogr. 35(1), 140 (2002)CrossRefGoogle Scholar
  41. 41.
    M. Maruyama, Y. Hayashi, H.Y. Yoshikawa, S. Okada, H. Koizumi, M. Tachibana, S. Sugiyama, H. Adachi, H. Matsumura, T. Inoue, K. Takano, S. Murakami, M. Yoshimura, Y. Mori, J. Cryst. Growth 452, 172 (2016)CrossRefGoogle Scholar
  42. 42.
    B. Lorber, C. Sauter, A. Théobald-Dietrich, A. Moreno, P. Schellenberger, M.-C. Robert, B. Capelle, S. Sanglier, N. Potier, R. Giegé, Prog. Biophys. Mol. Biol. 101(1–3), 13 (2009)CrossRefGoogle Scholar
  43. 43.
    P.A. Larsen, D.B. Patience, J.B. Rawlings, IEEE Control Syst. 26(4), 70 (2006)CrossRefGoogle Scholar
  44. 44.
    M. Fujiwara, Z.K. Nagy, J.W. Chew, R.D. Braatz, J. Process Control 15(5), 493 (2005)CrossRefGoogle Scholar
  45. 45.
    H.E.L. Madsen, J. Cryst. Growth 275(1–2), e191 (2005)CrossRefGoogle Scholar
  46. 46.
    C.H.J. Franco, R.C. Aglio, C.C. Correa, R. Diniz, RSC Adv. 4(78), 41461 (2014)CrossRefGoogle Scholar
  47. 47.
    Aligent, Agilent Technologies Ltd, Yarnton, Oxfordshire, England (2013)Google Scholar
  48. 48.
    Rigaku Corporation, Tokyo, Japan. (2015)Google Scholar
  49. 49.
    G. Sheldrick, Acta Crystallogr. C 71(1), 3 (2015)CrossRefGoogle Scholar
  50. 50.
    L. Farrugia, J. Appl. Crystallogr. 30(5 Part 1), 565 (1997)CrossRefGoogle Scholar
  51. 51.
    C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P.A. Wood, J. Appl. Crystallogr. 41(2), 466 (2008)CrossRefGoogle Scholar
  52. 52.
    V.A. Blatov, A.P. Shevchenko, D.M. Proserpio, Cryst. Growth Des. 14(7), 3576 (2014)CrossRefGoogle Scholar
  53. 53.
    K. Fujimori, B Chem. Soc. Jpn. 32(8), 850 (1959)CrossRefGoogle Scholar
  54. 54.
    J.T.,P.K. Hall, Hansma, Surf. Sci. 71(1), 1 (1978)CrossRefGoogle Scholar
  55. 55.
    N.O. Johnson, J.T. Turk, W.E. Bull, H.G. Mayfield Jr., Inorg. Chim Acta 25, 235 (1977)CrossRefGoogle Scholar
  56. 56.
    T.B. Chenskaya, M. Berghahn, P.C. Kunz, W. Frank, W. Kläui, J. Mol. Struct. 829(1–3), 135 (2007)CrossRefGoogle Scholar
  57. 57.
    T. Kurc, J. Janczak, J. Hoffmann, V. Videnova-Adrabinska, Cryst. Growth Des. 12(5), 2613 (2012)CrossRefGoogle Scholar
  58. 58.
    Q.-Y. Liu, L. Xu, Eur. J. Inorg. Chem. 17, 3458 (2005)CrossRefGoogle Scholar
  59. 59.
    L. Pejov, M. Ristova, B. Šoptrajanov, Spectrochim Acta A 79(1), 27 (2011)CrossRefGoogle Scholar
  60. 60.
    L. Pejov, M. Ristova, Z. Zdravkovski, B. Šoptrajanov, J. Mol. Struct. 524(1–3), 179 (2000)CrossRefGoogle Scholar
  61. 61.
    Z. Wang, M. Ströbele, K.-L. Zhang, H.J. Meyer, X.-Z. You, Z. Yu, Inorg. Chem. Commun. 5(3), 230 (2002)CrossRefGoogle Scholar
  62. 62.
    L.-P. Zhang, L.-G. Zhu, CrystEngComm 8(11), 815 (2006)CrossRefGoogle Scholar
  63. 63.
    C. Balarew, R. Duhlev, J. Solid State Chem. 55(1), 1 (1984)CrossRefGoogle Scholar
  64. 64.
    J.D. Dunitz, X-Ray Analysis and the Structure of Organic Molecules, 2 edn. (Verlag Helvetica Chimica Acta, Basel, 1996), pp. 183–224Google Scholar
  65. 65.
    X. Zhao, D.-X. Wang, Q. Chen, J.-B. Chen, G.-Y. Lin, S.-T. Yue, Y.-P. Cai, Inorg. Chem. Commun. 23, 127 (2012)CrossRefGoogle Scholar
  66. 66.
    G. Wu, F.-J. Yin, H. Wei, Z.-F. Liu, G. Yin, Z anorg Allg Chem. 637(5), 602 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Química - ICEUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  2. 2.Departamento de Química - ICExUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations