Skip to main content
Log in

Structural and Optical Properties of CeO2 Nanoparticles Synthesized by Modified Polymer Complex Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Ceria nanoparticles (Ceria-NPs) were synthesized using a modified polymer complex method and their structural and optical properties were evaluated. The solids were heated at 550 °C and characterized using Raman, UV–Vis absorption, diffuse reflectance, X-ray photoelectron and photoluminescence spectroscopies, X-ray diffraction (XRD) and scanning and transmission electron microscopy. The primary particles obtained presented a size of ~ 10 nm. The XRD indicated that CeO2 was the only crystalline phase. From the UV–Vis and diffuse reflectance spectra, energy values of 3.8 eV and 3.4 eV were obtained, values that can be associated with band—band electronic transitions and/or with those that involve ionized states located within the gap caused by defects and isolated atoms of Ce3+. Photoluminescence spectra reiterated the existence of localized states in the gap. Raman spectra revealed the existence of peroxide (O22−) and superoxide (O2) over the surface of the ceria-NPs. The XPS results indicated that the concentrations of Ce3+ and Ce4+ were ∼ 20.5% and ∼79.5% respectively, and that the stoichiometry of oxygen was 1.9 per atom of Ce. The results obtained from the characterization of CeO2-NPs synthesized make it as promising material for environmental remediation, biomedicine, gas sensing and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Gangopadhyay, D.D. Frolov, A.E. Masunov, S. Seal, J. Alloys Compd. 584, 199 (2014)

    Article  CAS  Google Scholar 

  2. C. Sun, L. Hong, L. Chen, Energy Environ. Sci. 5, 8475 (2012)

    Article  CAS  Google Scholar 

  3. N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, B. Johansson, Phys. Rev. Lett. 89, 166601 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, Science 309, 752 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. N.J. Lawrence, J.R. Brewer, L. Wang, T.S. Wu, J. Wells-Kingsbury, M.M. Ihrig, G. Wang, Y.L. Soo, W.N. Mei, C.L. Cheung, Nano Lett. 11, 2666 (2011)

    Article  CAS  PubMed  Google Scholar 

  6. S. Hull, S.T. Norberg, I. Ahmed, S.G. Eriksson, D. Marrocchelli, P.A. Madden, J. Solid State Chem. 182, 2815 (2009)

    Article  CAS  Google Scholar 

  7. S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  8. N.V. Skorodumova, R. Ahuja, S.I. Simak, I.A. Abrikosov, B. Johansson, B.I. Lundqvist, Phys. Rev. B 64, 115108 (2001)

    Article  CAS  Google Scholar 

  9. L. Fangxin, W. Chengyun, S. Qingde, Z. Tianpeng, Z. Guiwen, Appl. Opt. 36, 2796 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. A.S. Nikolic, M. Boskovic, M. Fabian, D.K. Bozanic, M. Vucinic-Vasic, A. Kremenovic, B. Antic, J. Nanosci. Nanotechnol. 13, 6787 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. J. Paier, C. Penschke, J. Sauer, Chem. Rev. 113, 3949 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. A. Trovarelli, P. Fornasiero, Catalysis by Ceria and Related Materials, 2nd edn. (Imperial College Press—Catalytic Science Series, Italy, 2005)

    Google Scholar 

  13. Z. Wu, S.H. Overbury, Catalysis by Materials with Well-Defined Structures (Elsevier, Oxford, 2015)

    Google Scholar 

  14. G.A. Deluga, J.R. Salge, L.D. Schmidt, X.E. Verykios, Science 303, 993 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. K. Otsuka, T. Ushiyama, I. Yamanaka, Chem. Lett. 22, 1517 (1993)

    Article  Google Scholar 

  16. S. Park, J.M. Vohs, R.J. Gorte, Nature 404, 265 (2000)

    Article  CAS  PubMed  Google Scholar 

  17. S. Tsunekawa, R. Sivamohan, T. Ohsuna, H. Takahashi, K. Tohji, Mater. Sci. Forum 315–317, 439 (1999)

    Article  Google Scholar 

  18. A.M. Grumezescu, Nanobiomaterials in Antimicrobial Therapy: Applications of Nanobiomaterials, 6th ed. (William Andrew is an imprint of Elsevier, 2016)

  19. S. Das, J.M. Dowding, K.E. Klump, J.F. McGinnis, W. Self, S. Seal, Nanomedicine 8, 1483 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. P. Jasinski, T. Suzuki, H.U. Anderson, Sensors Actuators B 95, 73 (2003)

    Article  CAS  Google Scholar 

  21. I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Nanoscale 3, 1411 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. H.R. Pouretedal, A. Kadkhodaie, Chin. J. Catal. 31, 1328 (2010)

    Article  CAS  Google Scholar 

  23. M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129, 63 (2000)

    Article  CAS  Google Scholar 

  24. K.S. Lin, S. Chowdhury, Int. J. Mol. Sci. 11, 3226 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Hirano, M. Inagaki, J. Mater. Chem. 10, 473 (2000)

    Article  CAS  Google Scholar 

  26. F. Charbgoo, M. Bin Ahmad, M. Darroudi, Int. J. Nanomed. 12, 1401 (2017)

    Article  CAS  Google Scholar 

  27. L. HE, Y. SU, J. Lanhong, S. SHI, J. Rare Earths 33, 791 (2015)

    Article  CAS  Google Scholar 

  28. C. Sun, L. Chen, Eur. J. Inorg. Chem. 2009, 3883 (2009)

    Article  CAS  Google Scholar 

  29. I.T. Liu, M.H. Hon, L.G. Teoh, J. Electron. Mater. 42, 2536 (2013)

    Article  CAS  Google Scholar 

  30. S. Deshpande, S. Patil, S.V. Kuchibhatla, S. Seal, Appl. Phys. Lett. 87, 133113 (2005)

    Article  CAS  Google Scholar 

  31. Y. Xin, X. Yang, P. Jiang, Z. Zhang, Z. Wang, Y. Zhang, ChemCatChem 3, 1772 (2011)

    Article  CAS  Google Scholar 

  32. J.J. Ketzial, A.S. Nesaraj, J. Ceram. Process. Res. 12, 74 (2011)

    Google Scholar 

  33. F. Heidari, A. Irankhah, Ceram. Int. 40, 12655 (2014)

    Article  CAS  Google Scholar 

  34. H.Y. Chang, H.I. Chen, J. Cryst. Growth 283, 457 (2005)

    Article  CAS  Google Scholar 

  35. V. Morris, P.G. Fleming, J.D. Holmes, M.A. Morris, Chem. Eng. Sci. 91, 102 (2013)

    Article  CAS  Google Scholar 

  36. D. Zhang, F. Niu, H. Li, L. Shi, J. Fang, Powder Technol. 207, 35 (2011)

    Article  CAS  Google Scholar 

  37. Q. Yuan, H. Duan, L. Li, L. Sun, Y. Zhang, C. Yan, J. Colloid Interface Sci. 335, 151 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. M. Kakihana, J. Ceram. Soc. Japan 1178, 857 (2009)

    Article  Google Scholar 

  39. J. Calvache-Muñoz, F.A.F.A. Prado, J. E. Rodríguez-Páez, Colloids Surf. A 529, 146 (2017)

    Article  CAS  Google Scholar 

  40. K.I. Maslakov, Y.A. Teterin, M.V. Ryzhkov, A.J. Popel, A.Y. Teterin, K.E. Ivanov, S.N. Kalmykov, V.G. Petrov, P.K. Petrov, I. Farnan, Phys. Chem. Chem. Phys. 20, 16167 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. L. Truffault, M.-T. Ta, T. Devers, K. Konstantinov, C. Simmonard, C. Andreazza, I.P. Nevirkovets, A. Pineau, O. Veron, J.-P. Blondeau, Mater. Res. Bull. 45, 527 (2010)

    Article  CAS  Google Scholar 

  42. A. Pfau, K.D. Schierbaum, Surf. Sci. 321, 71 (1994)

    Article  CAS  Google Scholar 

  43. M. Balestrieri, S. Colis, M. Gallart, G. Schmerber, M. Ziegler, P. Gilliot, A. Dinia, J. Mater. Chem. C 3, 7014 (2015)

    Article  CAS  Google Scholar 

  44. C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai, Chem. Mater. 17, 4514 (2005)

    Article  CAS  Google Scholar 

  45. T. Sekiya, T. Yagisawa, N. Kamiya, D. Das Mulmi, S. Kurita, Y. Murakami, T. Kodaira, J. Phys. Soc. Japan 73, 703 (2004)

    Article  CAS  Google Scholar 

  46. R.A. Smith, Semiconductors, 2nd edn. (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  47. P. Kubelka, F. Munk, Zeitschrift Für Tech. Phys. 12, 593 (1931)

    Google Scholar 

  48. A. Escobedo Morales, E. Sánchez, Mora, U. Pal, Rev. Mex. Física S 53, 18 (2007)

    Google Scholar 

  49. X.H. Lu, X. Huang, S.L. Xie, D.Z. Zheng, Z.Q. Liu, C.L. Liang, Y.X. Tong, Langmuir 26, 7569 (2010)

    Article  CAS  PubMed  Google Scholar 

  50. J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, G. Branković, Ceram. Int. 41, 1970 (2015)

    Article  CAS  Google Scholar 

  51. Z.V. Popović, M. Grujić-Brojčin, N. Paunović, M.M. Radonjić, V.D. Araújo, M.I.B. Bernardi, M.M. de Lima, A. Cantarero, J. Nanoparticle Res. 17, 23 (2015)

    Article  CAS  Google Scholar 

  52. Z. Wu, M. Li, J. Howe, H.M.M. Iii, S.H. Overbury, Langmuir 26, 16595 (2010)

    Article  CAS  PubMed  Google Scholar 

  53. T. Taniguchi, T. Watanabe, N. Sugiyama, A.K. Subramani, H. Wagata, N. Matsushita, M. Yoshimura, J. Phys. Chem. C 113, 19789 (2009)

    Article  CAS  Google Scholar 

  54. Y.M. Choi, H. Abernathy, H.T. Chen, M.C. Lin, M. Liu, ChemPhysChem 7, 1957 (2006)

    Article  CAS  PubMed  Google Scholar 

  55. A. Trovarelli, Catal. Rev. 38, 439 (2006)

    Article  Google Scholar 

  56. N. Shehata, K. Meehan, M. Hudait, N. Jain, J. Nanoparticle Res. 14, 1173 (2012)

    Article  CAS  Google Scholar 

  57. C. Lu, G. Li, J. Mao, L. Wang, E.Y. Andrei, Nano Lett. 14, 4628 (2014)

    Article  CAS  PubMed  Google Scholar 

  58. H. Yaghoubi, Z. Li, Y. Chen, H.T. Ngo, V.R. Bhethanabotla, B. Joseph, S. Ma, R. Schlaf, A. Takshi, ACS Catal. 5, 327 (2015)

    Article  CAS  Google Scholar 

  59. P. Tierney, T.J. Ennis, Á Allen, J. Wright, Thin Solid Films 603, 50 (2016)

    Article  CAS  Google Scholar 

  60. O. Stroyuk, A. Raevskaya, N. Gaponik, O. Selyshchev, V. Dzhagan, S. Schulze, D.R.T. Zahn, J. Phys. Chem. C 122, 10267 (2018)

    Article  CAS  Google Scholar 

  61. S. Biswas, J. Husek, S. Londo, L.R. Baker, Nano Lett. 18, 1228 (2018)

    Article  CAS  PubMed  Google Scholar 

  62. W. Shockley, W.T. Read, Phys. Rev. 87, 23 (1952)

    Article  Google Scholar 

  63. F. Staub, U. Rau, T. Kirchartz, ACS Omega 3, 8009 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. S.K. Kulkarni, Nanotechnology: Principles and Practices (Springer, Cham, 2015)

    Google Scholar 

  65. U.I. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids (Springer, Dordrecht, 2014)

    Book  Google Scholar 

  66. D.A. Andersson, S.I. Simak, B. Johansson, I.A. Abrikosov, N.V. Skorodumova, Phys. Rev. B 75, 035109 (2007)

    Article  CAS  Google Scholar 

  67. M.A. Henderson, C.L. Perkins, M.H. Engelhard, S. Thevuthasan, C.H.F. Peden, Surf. Sci. 526, 1 (2003)

    Article  CAS  Google Scholar 

  68. S. Tiwari, G. Rathore, N. Patra, A.K. Yadav, D. Bhattacharya, S.N. Jha, C.M. Tseng, S.W. Liu, S. Biring, S. Sen, arXiv:1807.02417v1 (2018)

  69. S. Aškrabić, Z.D. Dohčević-Mitrović, V.D. Araújo, G. Ionita, M.M. de Lima, A. Cantarero, J. Phys. D 46, 495306 (2013)

    Article  CAS  Google Scholar 

  70. N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, N. Madi, Nanoscale Res. Lett. 9, 231 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. E. Shoko, M.F. Smith, R.H. McKenzie, Phys. Rev. B 79, 134108 (2009)

    Article  CAS  Google Scholar 

  72. K.I. Maslakov, Y.A. Teterin, A.J. Popel, A.Y. Teterin, K.E. Ivanov, S.N. Kalmykov, V.G. Petrov, P.K. Petrov, I. Farnan, Appl. Surf. Sci. 448, 154 (2018)

    Article  CAS  Google Scholar 

  73. P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, J. Chem. Soc. Dalt. Trans. 0, 1686 (1976)

    Article  CAS  Google Scholar 

  74. D. Mullins, S. Overbury, D. Huntley, Surf. Sci. 409, 307 (1998)

    Article  CAS  Google Scholar 

  75. P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, Phys. Rev. B 68, 1 (2003)

    Article  CAS  Google Scholar 

  76. N.K. Renuka, J. Alloys Compd. 513, 230 (2012)

    Article  CAS  Google Scholar 

  77. F. Marabelli, P. Wachter, Phys. Rev. B 36, 1238 (1987)

    Article  CAS  Google Scholar 

  78. A. Younis, D. Chu, S. Li, J. Phys. D. Appl. Phys. 45, (2012)

  79. J. Holgado, G. Munuera, J. Espinós, A. González-Elipe, Appl. Surf. Sci. 158, 164 (2000)

    Article  CAS  Google Scholar 

  80. J. Xu, J. Harmer, G. Li, T. Chapman, P. Collier, S. Longworth, S.C. Tsang, Chem. Commun. 46, 1887 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded through project ID 4162, a Young Researcher agreement with COLCIENCIAS. We are grateful to the University of Cauca for making their laboratory facilities available for carrying out this work, to VRI-Unicauca for all logistical support and to the Surface Science Laboratory of the Industrial University of Santander for their valuable collaboration in the XPS measurements. We are especially grateful to Colin McLachlan for suggestions relating to the English text. To structure the diagram in Fig. 1, icons created by Freepik were used from http://www.flaticon.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Rodríguez-Páez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvache-Muñoz, J., Prado, F.A., Tirado, L. et al. Structural and Optical Properties of CeO2 Nanoparticles Synthesized by Modified Polymer Complex Method. J Inorg Organomet Polym 29, 813–826 (2019). https://doi.org/10.1007/s10904-018-01056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-01056-1

Keywords

Navigation