Preparation of Cadmium Sulfide/Polystyrene Nanocomposites Films Using Gamma Irradiation

  • H. A. Youssef
  • Z. I. Ali
  • T. A. Afify
  • M. Bekhit


In the present study we have synthesized Cadmium Sulfide/Cetyltrimethylammonium bromide (CdS/CTAB) nanoparticles + by the gamma ray irradiation method and then embedded in polystyrene polymer with different concentration (2, 5 and 10 wt%) forming CdS/PS nanocomposites using solution casting method. The as-prepared CdS/CTAB nanoparticles and CdS/PS nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), Ultraviolet/Visible (UV/Vis) absorption, high resolution scanning electron microscopy (HRSEM) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase. FTIR data suggesting interaction of the alkyl ammonium head group of CTAB with the CdS nanoparticle surface. UV–Vis spectroscopy revealed that the CdS/PS nanocomposites films showed quantum confinement effect. The TGA results showed incorporation of CdS nanoparticles significantly enhance the thermal properties of PS matrix. The photoluminescence spectra of CdS/PS nanocomposites films show two emission bands arising from the presence of CdS nanoparticles.


Nanocomposites CdS nanoparticles CTAB Gamma radiation Photoluminces 



This work was funded by the Science & Technology Development Fund (STDF) in Egypt under the Grant Number (6370). The authors would like to thank the STDF for their fund.


  1. 1.
    S.K. Tripathi, R. Kaur, Jyoti. Opt. Commun. 352, 55–62 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Tamborra, M. Striccoli, R. Comparelli, M. Curri, A. Petrella, A. Agostiano, Nanotechnology 15, 240–244 (2004)CrossRefGoogle Scholar
  3. 3.
    H.S. Kim, K.B. Yoon, Coord. Chem. Rev. 263–264, 239–256 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Kim, H. Koo, K. Ihn, K. Suh, J. Ind. Eng. Chem. 15, 103–109 (2009)CrossRefGoogle Scholar
  5. 5.
    S. Sarkar, E. Guibal, F. Quignard, A.K. SenGupta, J. Nanopart. Res. 14, 715 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Abedini, A.R. Daud, M.A. Abdul Hamid, N.K. Othman, E. Saion, Nanoscale Res. Lett. 8, 474 (2013)CrossRefGoogle Scholar
  7. 7.
    Z.I. Ali, O. Ebraheem, H.H. Saleh, F.H. Abd Salam, R. Sokary, Polym. Eng. Sci. 55, 2583–2590 (2015)CrossRefGoogle Scholar
  8. 8.
    Z.I. Ali, H.M. Hosni, H.H. Saleh, O.A. Ghazy, Appl. Phys. A 122, 514 (2016). CrossRefGoogle Scholar
  9. 9.
    J. Belloni, Catal. Today 113, 141–156 (2006)CrossRefGoogle Scholar
  10. 10.
    Z.I. Ali, O.A. Ghazy, G. Meligi, H.H. Saleh, M. Bekhit, Adv. Polym. Technol. (2016). Google Scholar
  11. 11.
    R. Chen, B. Han, L. Yang, Y. Yang, Y. Xu, Y. Mai, J. Lumin. 172, 197–200 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Wang, P. Fang, Z. Chen, S. Wang, Appl. Surf. Sci. 253, 8495–8499 (2007)CrossRefGoogle Scholar
  13. 13.
    G. Xu, H. Wang, C. Cheng, H. Zhang, J. Cao, G. Ji, Trans. Nonferrous Met. Soc. China 16, 105–109 (2006)CrossRefGoogle Scholar
  14. 14.
    P.A.L. Lopes, M.B. Santos, A.J.S. Mascarenhas, L.A. Silva, Mater. Lett. 136, 111–113 (2014)CrossRefGoogle Scholar
  15. 15.
    I.S. Elashmawi, N.A. Hakeem, M.Soliman Selim, Mater. Chem. Phys. 115, 132–135 (2009)CrossRefGoogle Scholar
  16. 16.
    X. Lu, H. Mao, W. Zhang, C. Wang, Mater. Lett. 61, 2288–2291 (2007)CrossRefGoogle Scholar
  17. 17.
    A. Abdolahzadeh Ziabari, F.E. Ghodsi, Solar Energy Mater. Solar Cells 105, 249–262 (2012)CrossRefGoogle Scholar
  18. 18.
    N. Lejmi, O. Savadogo, Solar Energy Mater. Solar Cells 70, 71–83 (2001)CrossRefGoogle Scholar
  19. 19.
    A. Kharazmi, E. Saion, N. Faraji, N. Soltani, A. Dehzangi, Chin. Phys. Lett. 30(5), 057803 (2013)CrossRefGoogle Scholar
  20. 20.
    S.-W. Yeh, T.-L. Wu, K.-H. Wei, Y.-S. Sun, K.S. Liang, J. Polym. Sci. B 43, 1220–1229 (2005)CrossRefGoogle Scholar
  21. 21.
    J. Mao, X.M. Chen, X.W. Du, J. Alloy. Compd. 656, 972–977 (2016)CrossRefGoogle Scholar
  22. 22.
    Tanvi, A. Mahajan, R.K. Bedi, S. Kumar, V. Saxena. A. Singh, D.K. Aswald, RSC Adv. 6, 48064–48071 (2016)CrossRefGoogle Scholar
  23. 23.
    Y.D. Wang, S. Zhang, C.L. Ma, H.D. Li, J. Lumin. 126, 661–664 (2007)CrossRefGoogle Scholar
  24. 24.
    K. Khoshnevisan, M. Barkhi, D. Zare, D. Davoodi, M. Tabatabaei, Synth. React. Inorg Metal Org Nano Metal Chem. 42, 644–648 (2012)CrossRefGoogle Scholar
  25. 25.
    K. Dhanabalan, S. Muthukkumarasamy, K. Gurunathan, Chalcogenide Lett. 9(6), 243–248 (2012)Google Scholar
  26. 26.
    R. Seoudi, M. Kamal, A.A. Shabaka, E.M. Abdelrazek, W. Eisa, Synth. Methods 160, 479–484 (2010)CrossRefGoogle Scholar
  27. 27.
    M.F. Kotkata, A.E. .Masoud, M.B. Mohamed, E.A. Mahmoud, Physica E 41, 1457–1465 (2009)CrossRefGoogle Scholar
  28. 28.
    H. Ghasemi, U. Sundararaj, Synth. Methods 162, 1177–1183 (2012)CrossRefGoogle Scholar
  29. 29.
    B. Jaleh, M.S. Madad, M.F. Tabrizi, S. Habibi, R. Golbedaghi, M.R. Keymanesh, J. Iran. Chem. Soc. 8, S161-S168 (2011)CrossRefGoogle Scholar
  30. 30.
    R. Seoudi, A. Shabaka, W.H. Eisa, B. Anies, N.M. Farage, Physica B 405, 919–924 (2010)CrossRefGoogle Scholar
  31. 31.
    A.M. Abdelghany, E.M. Abdelrazek, D.S. Rashad, Spectrochim. Acta A 130, 302–308 (2014)CrossRefGoogle Scholar
  32. 32.
    J. L.Chen, S. Zhu, Li,, Y. Chen, Wang, Eur. Polym. J. 43, 4593–4601 (2007)CrossRefGoogle Scholar
  33. 33.
    A.M. Mostafa, S.A. Yousef, W.H. Eisa, M.A. Ewaida, E.A. Al-Ashkar, Optik 144, 679–684 (2017)CrossRefGoogle Scholar
  34. 34.
    L.E. Brus, J. Chem. Phys. 80(9), 4403–4409 (1984)CrossRefGoogle Scholar
  35. 35.
    N.S. Kozhevnikova, A.S. Vorokh, A.A. Uritskaya, Russ. Chem. Rev. 84(3), 225–250 (2015)CrossRefGoogle Scholar
  36. 36.
    K.S. Evstrop’ev, Yu..A. Gatchin, S.K. Evstrop’ev, K.V. Dukel’skii, I.M. Kislyakov, N.A. Pegasova, I.V. Bagrov, Opt. Spectrosc. 120(3), 415–422 (2016)CrossRefGoogle Scholar
  37. 37.
    V. Singh, P. Chauhan, J. Phys. Chem. Solids 70, 1074–1079 (2009)CrossRefGoogle Scholar
  38. 38.
    M. El-Sakhawy, M.L. Hassan, H. Matouk, Nord. Pulp Pap. Res. J. 30(4), 660–666 (2015)CrossRefGoogle Scholar
  39. 39.
    P.K. Khanna, N. Singh, J. Lumin. 127, 474–482 (2007)CrossRefGoogle Scholar
  40. 40.
    A. Pucci, M. Boccia, F. Galembeck, C.A. de Paula Leite, N. Tirelli, G. Ruggeri, React. Funct. Polym. 68, 1144–1151 (2008)CrossRefGoogle Scholar
  41. 41.
    F. Wang, D. Liu, P. Zheng, X. Ma, J. Ind. Eng. Chem. 41, 165–174 (2016)CrossRefGoogle Scholar
  42. 42.
    M. Maiga, E.E. Yalcinkaya, B. Sonmez, D. Puglia, M. Yavuz, D.O. Demirkol, J.M. Kenny, S. Timur, Sen. Actuators B 235, 46–55 (2016)CrossRefGoogle Scholar
  43. 43.
    B. Wang, M. Zhou, Z. Rozynek, J.O. Fossum, J. Mater. Chem. 19, 1816–1828 (2009)CrossRefGoogle Scholar
  44. 44.
    A.P. Kumar, D. Depan, N.S. Tomer, R.P. Singh, Prog. Polym. Sci. 34, 479–515 (2009)CrossRefGoogle Scholar
  45. 45.
    J. Kuljanin-Jakovljević, M. Marinović-Cincović, Z. Stojanović, A. Krklješ, N.D. Abazović, M.I. Čomor, Polym. Degrad. Stab. 94, 891–897 (2009)CrossRefGoogle Scholar
  46. 46.
    J. Kuljanin, M. Vučković, M.I. Čomor, N. Bibić, V. Djoković, J.M. Nedeljković, Eur. Polym. J. 38, 1659–1662 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • H. A. Youssef
    • 1
  • Z. I. Ali
    • 1
  • T. A. Afify
    • 1
  • M. Bekhit
    • 1
  1. 1.Radiation Chemistry Department, National Center for Radiation Research and TechnologyEgyptian Atomic Energy Authority (EAEA)Nasr City, CairoEgypt

Personalised recommendations