The Effects of Nitrogen on Structure, Morphology and Electrical Resistance of Tantalum by Ion Implantation Method

  • Amir Hoshang Ramezani
  • Siamak Hoseinzadeh
  • Ali Bahari


In this paper, samples of tantalum with purities of 99.99% (0.58 mm thickness) were implanted by Nitrogen ions. The ions’ implantation process was performed at 30 keV and also at different portions which were in the range between 1 × 1017 and 1 × 1018 ions/cm2. The electrical characteristics were investigated on tantalum nitrides and Ta structures by current–voltage. The samples’ surface morphology was also studied through the atomic force microscopy. Through the application of the X-ray diffraction technique, the microstructure of the modified surfaces was obtained after ion implantation. Results of the experiments show the formation of hexagonal tantalum nitride (TaN0.43), as well as the fact that ion dose increases, more interstitial spaces are occupied by nitrogen atoms in the target crystal. The electrical resistivity of the tantalum after nitrogen implantation is found to increase with ion doses. Experimental data demonstrated that different nitrogen dose in ion beam powerfully affects microstructure, phase formation, surface morphology and resistivity of the tantalum. The changes in nitrogen ions were found to be responsible for variation in the resistivity values.


Tantalum Ion implantation XRD AFM Electrical resistivity 



We would like to thank the department of plasma physic research at Research and Science Branch of Islamic Azad University for providing the ion implantation for synthesis and AFM and XRD devices for analysis.


  1. 1.
    A.S. Abd-El-Aziz, C.E. Carraher, C.U. Pittman, M. Zeldin (eds.), Inorganic and Organometallic Macromolecules (Springer-Verlag, New York, 2008)Google Scholar
  2. 2.
    P. Budzyński, P. Tarkowski, E. Jartych, A.P. Kobzev, Vacuum 63, 737 (2001)CrossRefGoogle Scholar
  3. 3.
    Y. Liu, X. Zu, S. Qiu, X. Huang, Rare Met. 25, 309 (2006)CrossRefGoogle Scholar
  4. 4.
    D. Shikha, U. Jha, S.K. Sinha, P.K. Barhai, K.G.M. Nair, S. Dash, A.K. Tyagi, S. Kalavathy, D.C. Kothari, Surf. Coat. Technol. 203, 2541 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Zeldin, Acad. Press-Harcourt Sci. Technol. 12, 1 (2002)Google Scholar
  6. 6.
    V.I. Lavrentiev, A.D. Pogrebnjak, Surf. Coat. Technol. 99, 24 (1998)CrossRefGoogle Scholar
  7. 7.
    H.K. Sanghera, J.L. Sullivan, S.O. Saied, Appl. Surf. Sci. 141, 57 (1999)CrossRefGoogle Scholar
  8. 8.
    A.H. Ramezani, M.R. Hantehzadeh, M. Ghoranneviss, E. Darabi, Corros. Eng. Sci. Technol. 51, 393 (2016)CrossRefGoogle Scholar
  9. 9.
    A.H. Ramezani, M. Ghoranneviss, A. Shokouhy, A. Sari, J. Fusion Energy 30, 64 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Zeldin, J. Inorg. Organomet. Polym. 11, 63 (2001)CrossRefGoogle Scholar
  11. 11.
    A.H. Ramezani, A.H. Sari, A. Shokouhy, Int. Nano Lett. 7, 57 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Zeldin, E. Granger, W.K. Fife, J. Inorg. Organomet. Polym. 3, 141 (1993)CrossRefGoogle Scholar
  13. 13.
    C.A. Parish, M. Zeldin, J. Pratt, J. Inorg. Organomet. Polym. 12, 31 (2002)CrossRefGoogle Scholar
  14. 14.
    S.M. Kang, S.G. Yoon, S.J. Suh, D.H. Yoon, J. Thin Solid Films 61, 13 (2006)Google Scholar
  15. 15.
    S. Uekusa, T. Hama, Mem, Inst. Sci. Tech. Meiji Univ 46, 19 (2007)Google Scholar
  16. 16.
    N. Frety, J. Nazon, J. Sarradin, V. Flaud, J.C. Tedenac, J. Alloys Compd. 464, 526 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Zeldin, J. Inorg. Organomet. Polym. 11, 63 (2001)CrossRefGoogle Scholar
  18. 19.
    Y.J. Lee, B.S. Suh, S.K. Rha, C.O. Park, Thin Solid Film 146, 320141 (1998)Google Scholar
  19. 19.
    A.H. Ramezani, M.R. Hantehezadeh, M. Ghoranneviss et al., Bull. Mater. Sci. 39, 633 (2016)CrossRefGoogle Scholar
  20. 20.
    G.S. Chen, S.T. Chen, L.C. Yang, P.Y. Lee, J. Vac. Sci. Technol. A18, 720 (2000)CrossRefGoogle Scholar
  21. 21.
    R. Gholipur, Z. Khorshidi, A. Bahari, ACS Appl. Mater. Interfaces. 9, 12528 (2017)CrossRefGoogle Scholar
  22. 22.
    I.M. Belii, F.F. Komarov, V.S. Tishkovand, V.M. Yankovskii, Phys. Stat. Sol. 45, 343 (1978)CrossRefGoogle Scholar
  23. 23.
    W.J. Wang, T.M. Wang, X.J. Wang, Nucl. Instrum. Methods Phys. Res. Sec. B108, 300 (1996)CrossRefGoogle Scholar
  24. 24.
    X. Zhou, H.K. Ding, H.D. Li, B.X. Liu, Vacuum 39, 307 (1989)CrossRefGoogle Scholar
  25. 25.
    C.L. Au, W.A. Anderson, D.A. Schmitz, J.C. Flassayer, F.M. Collins, J. Mater. Res. 5, 1224 (1990)CrossRefGoogle Scholar
  26. 26.
    A.D. Yadav, S.K. Dubey, G.K. Gupta, T.K. Gundu Rao, Radiat. Effects Defect Solids 153, 25 (2000)CrossRefGoogle Scholar
  27. 27.
    S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.J. Ramezani, Mater. Sci. 28, 14855 (2017)Google Scholar
  28. 28.
    S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, J. Mater. Sci.: Mater. Electron. 28, 14446 (2017)Google Scholar
  29. 29.
    M. Nakhaei, A. Bahari., J. Mater. Sci.: Mater. Electron. 27, 5899 (2016)Google Scholar
  30. 30.
    D. Dastan, S.L. Panahi, N.B. Chaure., J. Mater. Sci.: Mater. Electron. 27, 12291 (2016)Google Scholar
  31. 31.
    D. Dastan, A. Banpurkar., J. Mater. Sci.: Mater. Electron. 28, 3851 (2016)Google Scholar
  32. 32.
    R. Ghasemiasl, S. Hoseinzadeh, M.A. Javadi, J. Thermophys. Heat Transf. (2017)Google Scholar
  33. 33.
    J.C. Yang, B. Kolasa, J.M. Bibson, M. Yeadon, Appl. Phys. Lett. 73, 2841 (1998)CrossRefGoogle Scholar
  34. 34.
    M.H. Tsai, S.C. Sun, H.T. Chiu, S.H. Chuang, Appl. Phys. Lett. 68, 1412 (1996)CrossRefGoogle Scholar
  35. 35.
    K.G. Stephen, I.H. Wilson, Thin Solid Films 50, 325 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amir Hoshang Ramezani
    • 1
  • Siamak Hoseinzadeh
    • 2
  • Ali Bahari
    • 3
  1. 1.Department of Physics, West Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Young Researchers and Elite Club, West Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Physics, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran

Personalised recommendations