Investigation of the Sr2+ Ions Removal from Contaminated Drinking Water Using Novel CaO NPs@MOF-5 Composite Adsorbent

  • Sina Yekta
  • Meysam Sadeghi


In this research, nanoporous crystalline metal–organic framework-5 (MOF-5, Zn4O(BDC)3:BDC = 1,4-benzenedicarboxylate) has been appropriately synthesized through solvothermal method. Then, for the first time, calcium oxide nanoparticles (CaO NPs) as 10.4 wt% of unit were dispersed and deposited on the MOF-5 using impregnation method for the preparation the novel CaO NPs@MOF-5 composite adsorbent. The characterization study of samples performed by SEM–EDX, TEM, AFM, XRD, FTIR, XPS, solid state 13C MAS NMR and TGA techniques. The removal process of strontium-II (Sr2+) ions by the CaO NPs@MOF-5 composite was operated under variant experimental conditions including pH, adsorbent dose, contact time, initial concentration, and the adsorbent type at room temperature and the pursuant monitoring was accomplished via the ICP-AES technique. The adsorption isotherm models including Langmuir, Freundlich, Temkin and Harkins–Jura have also been applied. The experimental adsorption isotherm is successfully illustrated by the Freundlich model. The ICP-AES results confirmed the adsorption of Sr2+ on the composite active surface after 40 min at room temperature and the yield calculated as 99.34%. The reaction kinetic information was studied by utilizing the pseudo first and second orders kinetic models. The adsorption kinetics was in good consistency with the pseudo second order models. Furthermore, the evaluation of the thermodynamic parameters such as ΔG0, ΔH0 and ΔS0, specified that the adsorption process of Sr2+ was spontaneous and describes a physic-chemical adsorption properties and plus the exothermic basis of the adsorption.


CaO NPs@MOF-5 Sr2+ ions Removal Adsorption Drinking water 



The authors give their earnest thanks to the Islamic Azad University of Qaemshahr, Islamic Republic of Iran for all sincere supports.


  1. 1.
    P.S. Gordienko, S.B. Yarusova, G.F. Krysenko, V.I. Kharchenko, A.I. Cherednichenko, Pac. Sci. Rev. 14, 269 (2012)Google Scholar
  2. 2.
    A.M. El-Kamash, M.R. El-Naggar, M.I. El-Dessouky, J. Hazard. Mater. B 136, 310 (2006). CrossRefGoogle Scholar
  3. 3.
    S.P. Mishra, D. Tiwary, Appl. Radiat. Isot. 51, 359 (1999)CrossRefGoogle Scholar
  4. 4.
    A.G. Pervov, E.V. Dudkin, O.A. Sidorenko, V.V. Antipov, S.A. Khakhanov, R.I. Makarov, Desalination 132, 315 (2000). CrossRefGoogle Scholar
  5. 5.
    T.K. Rout, D.K. Sengupta, G. Kaur, S. Kumar, Int. J. Miner. Process. 80, 215 (2006). CrossRefGoogle Scholar
  6. 6.
    H. Omar, H. Arida, A. Daifullah, Appl. Clay Sci. 44, 21 (2009). CrossRefGoogle Scholar
  7. 7.
    M.V. Balarama Krishna, S.V. Raoa, J. Arunachalam, M.S. Murali, S. Kumarc, V.K. Manchand, Sep. Purif. Technol. 38, 149 (2004). CrossRefGoogle Scholar
  8. 8.
    D.V. Marinin, G.N. Brown, Waste. Manag. 20, 545 (2000). CrossRefGoogle Scholar
  9. 9.
    S. Chegrouche, A. Mellah, M. Barkat, Desalination 235, 306 (2009). CrossRefGoogle Scholar
  10. 10.
    C. Chen, J. Hu, D. Shao, J. Li, X. Wang, J. Hazard. Mater. 164, 923 (2009). CrossRefGoogle Scholar
  11. 11.
    X. Ye, T. Liua, Q. Li, H. Liua, Z. Wu, Colloids Surf. A 330, 21 (2008). CrossRefGoogle Scholar
  12. 12.
    S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43, 2334 (2004). CrossRefGoogle Scholar
  13. 13.
    A.K. Cheetham, C.N.R. Rao, R.K. Feller, Chem. Commun. 46, 4780 (2006). CrossRefGoogle Scholar
  14. 14.
    T.J. Barton, L.M. Bull, W.G. Klemperer, D.A. Loy, B. McEnaney, M. Misono, P.A. Monson, G. Pez, G.W. Scherer, J.C. Vartuli, O.M. Yaghi, Chem. Mater. 11, 2633 (1999). CrossRefGoogle Scholar
  15. 15.
    J.R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38, 1477 (2009). CrossRefGoogle Scholar
  16. 16.
    J.R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 112, 869 (2012). CrossRefGoogle Scholar
  17. 17.
    P. Juzenas, W. Chen, Y.-P. Sun, M.A.N. Coelho, R. Generalov, N. Generalova, I.L. Christensen, Adv. Drug Deliv. Rev. 60, 1600 (2008). CrossRefGoogle Scholar
  18. 18.
    C.E. Probst, P. Zrazhevskiy, V. Bagalkot, X. Gao, Adv. Drug Deliv. Rev. 65, 703 (2013). CrossRefGoogle Scholar
  19. 19.
    A. Ghoufi, A. Subercaze, Q. Ma, P.G. Yot, Y. Ke, I. Puente-Orench, T. Devic, V.Guillerm,C. Zhong, C. Serre, G. Férey, G. Maurin, J. Phys. Chem. 116, 13289 (2012). Google Scholar
  20. 20.
    Q.L. Zhu, Q. Xu, Chem. Soc. Rev. 43, 5468 (2014). CrossRefGoogle Scholar
  21. 21.
    O.M. Yaghi, H.L. Li, T.L. Groy, J. Am. Chem. Soc. 118, 9096 (1996). CrossRefGoogle Scholar
  22. 22.
    L.G. Qiu, A.J. Xie, L.D. Zhang, Adv. Mater. 17, 689 (2005). CrossRefGoogle Scholar
  23. 23.
    J.S. Choi, W.J. Son, J. Kim, W.S. Ahn, Microporous Mesoporous Mater. 116, 727 (2008). CrossRefGoogle Scholar
  24. 24.
    J.E. Vanbenschoten, B.E. Reed, M.R. Matsumoto, P.J. McGarvey, Water Environ. Res. 66, 168 (1994). CrossRefGoogle Scholar
  25. 25.
    M.A. El-Sayed, Acc. Chem. Res. 34, 257 (2001). CrossRefGoogle Scholar
  26. 26.
    A. Henglein, Chem. Rev. 89, 1861 (1989). CrossRefGoogle Scholar
  27. 27.
    J. Park, K.J. An, Y.S. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Nat. Mater. 3, 891 (2004). CrossRefGoogle Scholar
  28. 28.
    A.L. Willis, N.J. Turro, S. O’Brien, Chem. Mater. 17, 5970 (2005). CrossRefGoogle Scholar
  29. 29.
    X. Wang, J. Zhuang, Q. Peng, Y.D. Li, Nature 437, 121 (2005). CrossRefGoogle Scholar
  30. 30.
    D.M. Marinković, M.V. Stanković, A.V. Veličković, J.M. Avramović, M.R. Miladinović, O.O. Stamenković, V.B. Veljković, D.M. Jovanović, Renew. Sustain. Energy Rev. 56, 1387 (2016). CrossRefGoogle Scholar
  31. 31.
    G. Lu, S. Li, Z. Guo, O.K. Farha, B.G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J.S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S.C.J. Loo, W.D. Wei, Y. Yang, J.T. Hupp, F. Huo, Nat. Chem. 19, 310 (2012). CrossRefGoogle Scholar
  32. 32.
    P. Falcaro, A.J. Hill, K.M. Nairn, J. Jasieniak, J.I. Mardel, T.J. Bastow, S.C. Mayo, M. Gimona, D. Gomez, H.J. Whitfield, R. Riccò, A. Patelli, B. Marmiroli, H. Amenitsch, T. Colson, L. Villanova, D. Buso, Nat. Commun. 2, 237 (2011). CrossRefGoogle Scholar
  33. 33.
    G. Li, H. Kobayashi, J.M. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura, H. Kitagawa, Nat. Mater. 13, 802 (2014). CrossRefGoogle Scholar
  34. 34.
    A. Ahmed, M. Forster, R. Clowes, D. Bradshaw, P. Myers, H. Zhang, J. Mater. Chem. 1, 3276 (2013). CrossRefGoogle Scholar
  35. 35.
    K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A.J. Hill, C.J. Doonan, P. Falcaro, Nat. Commun. 4, 7240 (2015). CrossRefGoogle Scholar
  36. 36.
    K. Khaletskaya, J. Reboul, M. Meilikhov, M. Nakahama, S. Diring, M. Tsujimoto, S. Isoda, F. Kim, K. Kamei, R.A. Fischer, S. Kitagawa, S. Furukawa, J. Am. Chem. Soc. 13, 10998 (2013). CrossRefGoogle Scholar
  37. 37.
    U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, J. Mater. Chem. 16, 626 (2006). CrossRefGoogle Scholar
  38. 38.
    A.W. Adamson, Physical Chemistry of Surfaces, 5th edn (Wiley, New York, 1990)Google Scholar
  39. 39.
    G. Duff David, M.C. Ross Sheina, D.H. Vaughan, J. Chem. Ed. 65, 815 (1988). CrossRefGoogle Scholar
  40. 40.
    K. Hall, L. Eagleton, A. Andreas, V. Theodore, Ind. Eng. Chem. Fundam. 5, 212 (1966)CrossRefGoogle Scholar
  41. 41.
    M.I. Temkin, Zh. Fiz. Khim. 15, 296 (1941)Google Scholar
  42. 42.
    T.C.V. Christian, H. Fauduet, C. Porte, A. Delacroix, J. Hazard. Mater. 105, 121 (2003). CrossRefGoogle Scholar
  43. 43.
    K.M. Monoj, Korean J. Chem. Eng. 27, 144 (2010). CrossRefGoogle Scholar
  44. 44.
    S. Lagergern, K. Sven. Vetenskapsakad. Handl. 24, 1 (1898)Google Scholar
  45. 45.
    Y.S.G. Mckay, Can. J. Chem. Eng. 76, 822 (1998). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran
  2. 2.Department of ChemistryLorestan UniversityKhorramabadIran

Personalised recommendations