Skip to main content
Log in

Investigation of the Sr2+ Ions Removal from Contaminated Drinking Water Using Novel CaO NPs@MOF-5 Composite Adsorbent

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this research, nanoporous crystalline metal–organic framework-5 (MOF-5, Zn4O(BDC)3:BDC = 1,4-benzenedicarboxylate) has been appropriately synthesized through solvothermal method. Then, for the first time, calcium oxide nanoparticles (CaO NPs) as 10.4 wt% of unit were dispersed and deposited on the MOF-5 using impregnation method for the preparation the novel CaO NPs@MOF-5 composite adsorbent. The characterization study of samples performed by SEM–EDX, TEM, AFM, XRD, FTIR, XPS, solid state 13C MAS NMR and TGA techniques. The removal process of strontium-II (Sr2+) ions by the CaO NPs@MOF-5 composite was operated under variant experimental conditions including pH, adsorbent dose, contact time, initial concentration, and the adsorbent type at room temperature and the pursuant monitoring was accomplished via the ICP-AES technique. The adsorption isotherm models including Langmuir, Freundlich, Temkin and Harkins–Jura have also been applied. The experimental adsorption isotherm is successfully illustrated by the Freundlich model. The ICP-AES results confirmed the adsorption of Sr2+ on the composite active surface after 40 min at room temperature and the yield calculated as 99.34%. The reaction kinetic information was studied by utilizing the pseudo first and second orders kinetic models. The adsorption kinetics was in good consistency with the pseudo second order models. Furthermore, the evaluation of the thermodynamic parameters such as ΔG0, ΔH0 and ΔS0, specified that the adsorption process of Sr2+ was spontaneous and describes a physic-chemical adsorption properties and plus the exothermic basis of the adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Scheme 1

Similar content being viewed by others

References

  1. P.S. Gordienko, S.B. Yarusova, G.F. Krysenko, V.I. Kharchenko, A.I. Cherednichenko, Pac. Sci. Rev. 14, 269 (2012)

    Google Scholar 

  2. A.M. El-Kamash, M.R. El-Naggar, M.I. El-Dessouky, J. Hazard. Mater. B 136, 310 (2006). https://doi.org/10.1016/j.jhazmat.2005.12.020

    Article  CAS  Google Scholar 

  3. S.P. Mishra, D. Tiwary, Appl. Radiat. Isot. 51, 359 (1999)

    Article  CAS  Google Scholar 

  4. A.G. Pervov, E.V. Dudkin, O.A. Sidorenko, V.V. Antipov, S.A. Khakhanov, R.I. Makarov, Desalination 132, 315 (2000). https://doi.org/10.1016/S0011-9164(00)00166-1

    Article  CAS  Google Scholar 

  5. T.K. Rout, D.K. Sengupta, G. Kaur, S. Kumar, Int. J. Miner. Process. 80, 215 (2006). https://doi.org/10.1016/j.minpro.2006.04.006

    Article  CAS  Google Scholar 

  6. H. Omar, H. Arida, A. Daifullah, Appl. Clay Sci. 44, 21 (2009). https://doi.org/10.1016/j.clay.2008.12.013

    Article  CAS  Google Scholar 

  7. M.V. Balarama Krishna, S.V. Raoa, J. Arunachalam, M.S. Murali, S. Kumarc, V.K. Manchand, Sep. Purif. Technol. 38, 149 (2004). https://doi.org/10.1016/j.seppur.2003.11.002

    Article  CAS  Google Scholar 

  8. D.V. Marinin, G.N. Brown, Waste. Manag. 20, 545 (2000). https://doi.org/10.1016/S0956-053X(00)00017-9

    Article  CAS  Google Scholar 

  9. S. Chegrouche, A. Mellah, M. Barkat, Desalination 235, 306 (2009). https://doi.org/10.1016/j.desal.2008.01.018

    Article  CAS  Google Scholar 

  10. C. Chen, J. Hu, D. Shao, J. Li, X. Wang, J. Hazard. Mater. 164, 923 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.089

    Article  CAS  Google Scholar 

  11. X. Ye, T. Liua, Q. Li, H. Liua, Z. Wu, Colloids Surf. A 330, 21 (2008). https://doi.org/10.1016/j.colsurfa.2008.07.019

    Article  CAS  Google Scholar 

  12. S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43, 2334 (2004). https://doi.org/10.1002/anie.200300610

    Article  CAS  Google Scholar 

  13. A.K. Cheetham, C.N.R. Rao, R.K. Feller, Chem. Commun. 46, 4780 (2006). https://doi.org/10.1039/B610264F

    Article  Google Scholar 

  14. T.J. Barton, L.M. Bull, W.G. Klemperer, D.A. Loy, B. McEnaney, M. Misono, P.A. Monson, G. Pez, G.W. Scherer, J.C. Vartuli, O.M. Yaghi, Chem. Mater. 11, 2633 (1999). https://doi.org/10.1021/cm9805929

    Article  CAS  Google Scholar 

  15. J.R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38, 1477 (2009). https://doi.org/10.1039/b802426j

    Article  CAS  Google Scholar 

  16. J.R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 112, 869 (2012). https://doi.org/10.1021/cr200190s

    Article  CAS  Google Scholar 

  17. P. Juzenas, W. Chen, Y.-P. Sun, M.A.N. Coelho, R. Generalov, N. Generalova, I.L. Christensen, Adv. Drug Deliv. Rev. 60, 1600 (2008). https://doi.org/10.1016/j.addr.2008.08.004

    Article  CAS  Google Scholar 

  18. C.E. Probst, P. Zrazhevskiy, V. Bagalkot, X. Gao, Adv. Drug Deliv. Rev. 65, 703 (2013). https://doi.org/10.1016/j.addr.2012.09.036

    Article  CAS  Google Scholar 

  19. A. Ghoufi, A. Subercaze, Q. Ma, P.G. Yot, Y. Ke, I. Puente-Orench, T. Devic, V.Guillerm,C. Zhong, C. Serre, G. Férey, G. Maurin, J. Phys. Chem. 116, 13289 (2012). https://doi.org/10.1021/jp303686m

    CAS  Google Scholar 

  20. Q.L. Zhu, Q. Xu, Chem. Soc. Rev. 43, 5468 (2014). https://doi.org/10.1039/C3CS60472A

    Article  CAS  Google Scholar 

  21. O.M. Yaghi, H.L. Li, T.L. Groy, J. Am. Chem. Soc. 118, 9096 (1996). https://doi.org/10.1021/ja960746q

    Article  CAS  Google Scholar 

  22. L.G. Qiu, A.J. Xie, L.D. Zhang, Adv. Mater. 17, 689 (2005). https://doi.org/10.1002/adma.200400663

    Article  CAS  Google Scholar 

  23. J.S. Choi, W.J. Son, J. Kim, W.S. Ahn, Microporous Mesoporous Mater. 116, 727 (2008). https://doi.org/10.1016/j.micromeso.2008.04.033

    Article  CAS  Google Scholar 

  24. J.E. Vanbenschoten, B.E. Reed, M.R. Matsumoto, P.J. McGarvey, Water Environ. Res. 66, 168 (1994). https://doi.org/10.2175/WER.66.2.11

    Article  CAS  Google Scholar 

  25. M.A. El-Sayed, Acc. Chem. Res. 34, 257 (2001). https://doi.org/10.1021/ar960016n

    Article  CAS  Google Scholar 

  26. A. Henglein, Chem. Rev. 89, 1861 (1989). https://doi.org/10.1021/cr00098a010

    Article  CAS  Google Scholar 

  27. J. Park, K.J. An, Y.S. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Nat. Mater. 3, 891 (2004). https://doi.org/10.1038/nmat1251

    Article  CAS  Google Scholar 

  28. A.L. Willis, N.J. Turro, S. O’Brien, Chem. Mater. 17, 5970 (2005). https://doi.org/10.1021/cm051370v

    Article  CAS  Google Scholar 

  29. X. Wang, J. Zhuang, Q. Peng, Y.D. Li, Nature 437, 121 (2005). https://doi.org/10.1038/nature03968

    Article  CAS  Google Scholar 

  30. D.M. Marinković, M.V. Stanković, A.V. Veličković, J.M. Avramović, M.R. Miladinović, O.O. Stamenković, V.B. Veljković, D.M. Jovanović, Renew. Sustain. Energy Rev. 56, 1387 (2016). https://doi.org/10.1016/j.rser.2015.12.007

    Article  Google Scholar 

  31. G. Lu, S. Li, Z. Guo, O.K. Farha, B.G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J.S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S.C.J. Loo, W.D. Wei, Y. Yang, J.T. Hupp, F. Huo, Nat. Chem. 19, 310 (2012). https://doi.org/10.1038/nchem.1272

    Article  Google Scholar 

  32. P. Falcaro, A.J. Hill, K.M. Nairn, J. Jasieniak, J.I. Mardel, T.J. Bastow, S.C. Mayo, M. Gimona, D. Gomez, H.J. Whitfield, R. Riccò, A. Patelli, B. Marmiroli, H. Amenitsch, T. Colson, L. Villanova, D. Buso, Nat. Commun. 2, 237 (2011). https://doi.org/10.1038/ncomms1234

    Article  Google Scholar 

  33. G. Li, H. Kobayashi, J.M. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura, H. Kitagawa, Nat. Mater. 13, 802 (2014). https://doi.org/10.1038/nmat4030

    Article  CAS  Google Scholar 

  34. A. Ahmed, M. Forster, R. Clowes, D. Bradshaw, P. Myers, H. Zhang, J. Mater. Chem. 1, 3276 (2013). https://doi.org/10.1039/C3TA14409G

    Article  CAS  Google Scholar 

  35. K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A.J. Hill, C.J. Doonan, P. Falcaro, Nat. Commun. 4, 7240 (2015). https://doi.org/10.1038/ncomms8240

    Article  Google Scholar 

  36. K. Khaletskaya, J. Reboul, M. Meilikhov, M. Nakahama, S. Diring, M. Tsujimoto, S. Isoda, F. Kim, K. Kamei, R.A. Fischer, S. Kitagawa, S. Furukawa, J. Am. Chem. Soc. 13, 10998 (2013). https://doi.org/10.1021/ja403108x

    Article  Google Scholar 

  37. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, J. Mater. Chem. 16, 626 (2006). https://doi.org/10.1039/B511962F

    Article  CAS  Google Scholar 

  38. A.W. Adamson, Physical Chemistry of Surfaces, 5th edn (Wiley, New York, 1990)

    Google Scholar 

  39. G. Duff David, M.C. Ross Sheina, D.H. Vaughan, J. Chem. Ed. 65, 815 (1988). https://doi.org/10.1021/ed065p815

    Article  Google Scholar 

  40. K. Hall, L. Eagleton, A. Andreas, V. Theodore, Ind. Eng. Chem. Fundam. 5, 212 (1966)

    Article  CAS  Google Scholar 

  41. M.I. Temkin, Zh. Fiz. Khim. 15, 296 (1941)

    CAS  Google Scholar 

  42. T.C.V. Christian, H. Fauduet, C. Porte, A. Delacroix, J. Hazard. Mater. 105, 121 (2003). https://doi.org/10.1016/j.jhazmat.2003.07.009

    Article  Google Scholar 

  43. K.M. Monoj, Korean J. Chem. Eng. 27, 144 (2010). https://doi.org/10.1007/s11814-009-0304-6

    Article  Google Scholar 

  44. S. Lagergern, K. Sven. Vetenskapsakad. Handl. 24, 1 (1898)

    Google Scholar 

  45. Y.S.G. Mckay, Can. J. Chem. Eng. 76, 822 (1998). https://doi.org/10.1002/cjce.5450760419

    Article  Google Scholar 

Download references

Acknowledgements

The authors give their earnest thanks to the Islamic Azad University of Qaemshahr, Islamic Republic of Iran for all sincere supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Yekta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yekta, S., Sadeghi, M. Investigation of the Sr2+ Ions Removal from Contaminated Drinking Water Using Novel CaO NPs@MOF-5 Composite Adsorbent. J Inorg Organomet Polym 28, 1049–1064 (2018). https://doi.org/10.1007/s10904-017-0765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0765-8

Keywords

Navigation