Advertisement

Investigation of the Sr2+ Ions Removal from Contaminated Drinking Water Using Novel CaO NPs@MOF-5 Composite Adsorbent

  • Sina Yekta
  • Meysam Sadeghi
Article

Abstract

In this research, nanoporous crystalline metal–organic framework-5 (MOF-5, Zn4O(BDC)3:BDC = 1,4-benzenedicarboxylate) has been appropriately synthesized through solvothermal method. Then, for the first time, calcium oxide nanoparticles (CaO NPs) as 10.4 wt% of unit were dispersed and deposited on the MOF-5 using impregnation method for the preparation the novel CaO NPs@MOF-5 composite adsorbent. The characterization study of samples performed by SEM–EDX, TEM, AFM, XRD, FTIR, XPS, solid state 13C MAS NMR and TGA techniques. The removal process of strontium-II (Sr2+) ions by the CaO NPs@MOF-5 composite was operated under variant experimental conditions including pH, adsorbent dose, contact time, initial concentration, and the adsorbent type at room temperature and the pursuant monitoring was accomplished via the ICP-AES technique. The adsorption isotherm models including Langmuir, Freundlich, Temkin and Harkins–Jura have also been applied. The experimental adsorption isotherm is successfully illustrated by the Freundlich model. The ICP-AES results confirmed the adsorption of Sr2+ on the composite active surface after 40 min at room temperature and the yield calculated as 99.34%. The reaction kinetic information was studied by utilizing the pseudo first and second orders kinetic models. The adsorption kinetics was in good consistency with the pseudo second order models. Furthermore, the evaluation of the thermodynamic parameters such as ΔG0, ΔH0 and ΔS0, specified that the adsorption process of Sr2+ was spontaneous and describes a physic-chemical adsorption properties and plus the exothermic basis of the adsorption.

Keywords

CaO NPs@MOF-5 Sr2+ ions Removal Adsorption Drinking water 

Notes

Acknowledgements

The authors give their earnest thanks to the Islamic Azad University of Qaemshahr, Islamic Republic of Iran for all sincere supports.

References

  1. 1.
    P.S. Gordienko, S.B. Yarusova, G.F. Krysenko, V.I. Kharchenko, A.I. Cherednichenko, Pac. Sci. Rev. 14, 269 (2012)Google Scholar
  2. 2.
    A.M. El-Kamash, M.R. El-Naggar, M.I. El-Dessouky, J. Hazard. Mater. B 136, 310 (2006).  https://doi.org/10.1016/j.jhazmat.2005.12.020 CrossRefGoogle Scholar
  3. 3.
    S.P. Mishra, D. Tiwary, Appl. Radiat. Isot. 51, 359 (1999)CrossRefGoogle Scholar
  4. 4.
    A.G. Pervov, E.V. Dudkin, O.A. Sidorenko, V.V. Antipov, S.A. Khakhanov, R.I. Makarov, Desalination 132, 315 (2000).  https://doi.org/10.1016/S0011-9164(00)00166-1 CrossRefGoogle Scholar
  5. 5.
    T.K. Rout, D.K. Sengupta, G. Kaur, S. Kumar, Int. J. Miner. Process. 80, 215 (2006).  https://doi.org/10.1016/j.minpro.2006.04.006 CrossRefGoogle Scholar
  6. 6.
    H. Omar, H. Arida, A. Daifullah, Appl. Clay Sci. 44, 21 (2009).  https://doi.org/10.1016/j.clay.2008.12.013 CrossRefGoogle Scholar
  7. 7.
    M.V. Balarama Krishna, S.V. Raoa, J. Arunachalam, M.S. Murali, S. Kumarc, V.K. Manchand, Sep. Purif. Technol. 38, 149 (2004).  https://doi.org/10.1016/j.seppur.2003.11.002 CrossRefGoogle Scholar
  8. 8.
    D.V. Marinin, G.N. Brown, Waste. Manag. 20, 545 (2000).  https://doi.org/10.1016/S0956-053X(00)00017-9 CrossRefGoogle Scholar
  9. 9.
    S. Chegrouche, A. Mellah, M. Barkat, Desalination 235, 306 (2009).  https://doi.org/10.1016/j.desal.2008.01.018 CrossRefGoogle Scholar
  10. 10.
    C. Chen, J. Hu, D. Shao, J. Li, X. Wang, J. Hazard. Mater. 164, 923 (2009).  https://doi.org/10.1016/j.jhazmat.2008.08.089 CrossRefGoogle Scholar
  11. 11.
    X. Ye, T. Liua, Q. Li, H. Liua, Z. Wu, Colloids Surf. A 330, 21 (2008).  https://doi.org/10.1016/j.colsurfa.2008.07.019 CrossRefGoogle Scholar
  12. 12.
    S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43, 2334 (2004).  https://doi.org/10.1002/anie.200300610 CrossRefGoogle Scholar
  13. 13.
    A.K. Cheetham, C.N.R. Rao, R.K. Feller, Chem. Commun. 46, 4780 (2006).  https://doi.org/10.1039/B610264F CrossRefGoogle Scholar
  14. 14.
    T.J. Barton, L.M. Bull, W.G. Klemperer, D.A. Loy, B. McEnaney, M. Misono, P.A. Monson, G. Pez, G.W. Scherer, J.C. Vartuli, O.M. Yaghi, Chem. Mater. 11, 2633 (1999).  https://doi.org/10.1021/cm9805929 CrossRefGoogle Scholar
  15. 15.
    J.R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38, 1477 (2009).  https://doi.org/10.1039/b802426j CrossRefGoogle Scholar
  16. 16.
    J.R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 112, 869 (2012).  https://doi.org/10.1021/cr200190s CrossRefGoogle Scholar
  17. 17.
    P. Juzenas, W. Chen, Y.-P. Sun, M.A.N. Coelho, R. Generalov, N. Generalova, I.L. Christensen, Adv. Drug Deliv. Rev. 60, 1600 (2008).  https://doi.org/10.1016/j.addr.2008.08.004 CrossRefGoogle Scholar
  18. 18.
    C.E. Probst, P. Zrazhevskiy, V. Bagalkot, X. Gao, Adv. Drug Deliv. Rev. 65, 703 (2013).  https://doi.org/10.1016/j.addr.2012.09.036 CrossRefGoogle Scholar
  19. 19.
    A. Ghoufi, A. Subercaze, Q. Ma, P.G. Yot, Y. Ke, I. Puente-Orench, T. Devic, V.Guillerm,C. Zhong, C. Serre, G. Férey, G. Maurin, J. Phys. Chem. 116, 13289 (2012).  https://doi.org/10.1021/jp303686m Google Scholar
  20. 20.
    Q.L. Zhu, Q. Xu, Chem. Soc. Rev. 43, 5468 (2014).  https://doi.org/10.1039/C3CS60472A CrossRefGoogle Scholar
  21. 21.
    O.M. Yaghi, H.L. Li, T.L. Groy, J. Am. Chem. Soc. 118, 9096 (1996).  https://doi.org/10.1021/ja960746q CrossRefGoogle Scholar
  22. 22.
    L.G. Qiu, A.J. Xie, L.D. Zhang, Adv. Mater. 17, 689 (2005).  https://doi.org/10.1002/adma.200400663 CrossRefGoogle Scholar
  23. 23.
    J.S. Choi, W.J. Son, J. Kim, W.S. Ahn, Microporous Mesoporous Mater. 116, 727 (2008).  https://doi.org/10.1016/j.micromeso.2008.04.033 CrossRefGoogle Scholar
  24. 24.
    J.E. Vanbenschoten, B.E. Reed, M.R. Matsumoto, P.J. McGarvey, Water Environ. Res. 66, 168 (1994).  https://doi.org/10.2175/WER.66.2.11 CrossRefGoogle Scholar
  25. 25.
    M.A. El-Sayed, Acc. Chem. Res. 34, 257 (2001).  https://doi.org/10.1021/ar960016n CrossRefGoogle Scholar
  26. 26.
    A. Henglein, Chem. Rev. 89, 1861 (1989).  https://doi.org/10.1021/cr00098a010 CrossRefGoogle Scholar
  27. 27.
    J. Park, K.J. An, Y.S. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Nat. Mater. 3, 891 (2004).  https://doi.org/10.1038/nmat1251 CrossRefGoogle Scholar
  28. 28.
    A.L. Willis, N.J. Turro, S. O’Brien, Chem. Mater. 17, 5970 (2005).  https://doi.org/10.1021/cm051370v CrossRefGoogle Scholar
  29. 29.
    X. Wang, J. Zhuang, Q. Peng, Y.D. Li, Nature 437, 121 (2005).  https://doi.org/10.1038/nature03968 CrossRefGoogle Scholar
  30. 30.
    D.M. Marinković, M.V. Stanković, A.V. Veličković, J.M. Avramović, M.R. Miladinović, O.O. Stamenković, V.B. Veljković, D.M. Jovanović, Renew. Sustain. Energy Rev. 56, 1387 (2016).  https://doi.org/10.1016/j.rser.2015.12.007 CrossRefGoogle Scholar
  31. 31.
    G. Lu, S. Li, Z. Guo, O.K. Farha, B.G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J.S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S.C.J. Loo, W.D. Wei, Y. Yang, J.T. Hupp, F. Huo, Nat. Chem. 19, 310 (2012).  https://doi.org/10.1038/nchem.1272 CrossRefGoogle Scholar
  32. 32.
    P. Falcaro, A.J. Hill, K.M. Nairn, J. Jasieniak, J.I. Mardel, T.J. Bastow, S.C. Mayo, M. Gimona, D. Gomez, H.J. Whitfield, R. Riccò, A. Patelli, B. Marmiroli, H. Amenitsch, T. Colson, L. Villanova, D. Buso, Nat. Commun. 2, 237 (2011).  https://doi.org/10.1038/ncomms1234 CrossRefGoogle Scholar
  33. 33.
    G. Li, H. Kobayashi, J.M. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura, H. Kitagawa, Nat. Mater. 13, 802 (2014).  https://doi.org/10.1038/nmat4030 CrossRefGoogle Scholar
  34. 34.
    A. Ahmed, M. Forster, R. Clowes, D. Bradshaw, P. Myers, H. Zhang, J. Mater. Chem. 1, 3276 (2013).  https://doi.org/10.1039/C3TA14409G CrossRefGoogle Scholar
  35. 35.
    K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A.J. Hill, C.J. Doonan, P. Falcaro, Nat. Commun. 4, 7240 (2015).  https://doi.org/10.1038/ncomms8240 CrossRefGoogle Scholar
  36. 36.
    K. Khaletskaya, J. Reboul, M. Meilikhov, M. Nakahama, S. Diring, M. Tsujimoto, S. Isoda, F. Kim, K. Kamei, R.A. Fischer, S. Kitagawa, S. Furukawa, J. Am. Chem. Soc. 13, 10998 (2013).  https://doi.org/10.1021/ja403108x CrossRefGoogle Scholar
  37. 37.
    U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, J. Mater. Chem. 16, 626 (2006).  https://doi.org/10.1039/B511962F CrossRefGoogle Scholar
  38. 38.
    A.W. Adamson, Physical Chemistry of Surfaces, 5th edn (Wiley, New York, 1990)Google Scholar
  39. 39.
    G. Duff David, M.C. Ross Sheina, D.H. Vaughan, J. Chem. Ed. 65, 815 (1988).  https://doi.org/10.1021/ed065p815 CrossRefGoogle Scholar
  40. 40.
    K. Hall, L. Eagleton, A. Andreas, V. Theodore, Ind. Eng. Chem. Fundam. 5, 212 (1966)CrossRefGoogle Scholar
  41. 41.
    M.I. Temkin, Zh. Fiz. Khim. 15, 296 (1941)Google Scholar
  42. 42.
    T.C.V. Christian, H. Fauduet, C. Porte, A. Delacroix, J. Hazard. Mater. 105, 121 (2003).  https://doi.org/10.1016/j.jhazmat.2003.07.009 CrossRefGoogle Scholar
  43. 43.
    K.M. Monoj, Korean J. Chem. Eng. 27, 144 (2010).  https://doi.org/10.1007/s11814-009-0304-6 CrossRefGoogle Scholar
  44. 44.
    S. Lagergern, K. Sven. Vetenskapsakad. Handl. 24, 1 (1898)Google Scholar
  45. 45.
    Y.S.G. Mckay, Can. J. Chem. Eng. 76, 822 (1998).  https://doi.org/10.1002/cjce.5450760419 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran
  2. 2.Department of ChemistryLorestan UniversityKhorramabadIran

Personalised recommendations