Skip to main content
Log in

Investigation of Structural and Magnetic Properties on Mg1−xZnxFe2−xAlxO4 (0.0 ≤ x ≤ 0.8) Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A mixed spinel ferrite nanoparticle, Mg1−xZnxFe2−xAlxO4 NPs (0.0 ≤ x ≤ 0.8), were synthesized effectively by co-precipitation method and sintered at 600 °C for 10 h. The structural and magnetic properties of the products were studied through X-ray powder diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer. The cubic spinel phase was confirmed by XRDs with particle size between 24.5 and 40.2 nm. The lattice parameters for the products are increased with increasing the Zn2+ and Al3+ ratio due to the successfully integrated into the cubic system without changing the original structure. Although it was observed from the cation distributions, that the cubic phase is was an inverse spinel, wherein which the Fe3+ and Mg2+ ions occupied both the tetrahedral A and octahedral B- sites, the Zn2+ ions preferred to occupy the A- sites and Al3+ occupy preferred the B -sites. The morphology of the nanoparticles NPs detailed was using TEM, HR-TEM, and SAED in selected area confirmed the particle size and crystalline spinel structure. Magnetization results at room temperature presents a narrow hysteresis loop for all ratios, which is specific of the soft magnetic materials. Also, we noticed that the increase in the magnetization with increasing the ratio of Zn2+ and Al3+ consistent with the enhancement of crystallinity. Moreover, we found that the saturation magnetization, coercively and remanent for Mg1−xZnxFe2−xAlxO4 where x = 0.6 sample is the highest, indicating the potential of Zn and Al substitution in enhancing the magnetic properties of magnesium ferrite. According to AC magnetic susceptibility measurements, the nanoparticles exhibit superparamagnetic/spin glassy behaviour with a very strong inter-nanoparticles interaction. Additionally, AC susceptibility measurements indicated a relative sensitivity of samples to the variation of applied frequency, which is an important result for the applications in hyperthermia based therapy. This is the first study in which both Zn2+ and Al3+ ions with varying concentration were tried to substitute into MgFe2O4 simultaneously and their effects on magnetic properties of MgFe2O4 was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.P. Hankare, U.B. Sankpal, R.P. Patil, A.V. Jadhav, K.M. Garadkar, B.K. Chougule, Magnetic and dielectric studies of nanocrystalline zinc substituted Cu-Mn ferrites. J. Magn. Magn. Mater. 323, 389–393 (2011)

    Article  CAS  Google Scholar 

  2. P. Dhiman, M. Naushad, K.M. Batoo, A. Kumar, G. Sharma, A.A. Ghfar, G. Kumar, M. Singh, Nano FexZn1–xO as a tuneable and efficient photocatalyst for solar powered degradation of Bisphenol A from water. J. Clean. Prod. 165, 1542–1556 (2017)

    Article  CAS  Google Scholar 

  3. S.K. Gore, R.S. Mane, M. Naushad, S.S. Jadhav, M.K. Zate, Z.A. Alothman, B.K.N. Hui, Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 44, 6384 (2015)

    Article  CAS  Google Scholar 

  4. V.G. Harris, Z. Chen, Y. Chen, S. Yoon, T. Sakai, A. Geiler, A. Yang, Y. He, K.S. Ziemer, N.X. Sun, C. Vittoria, Ba-hexaferrite films for next generation microwave devices. J. Appl. Phys. 99, 08M911 (2006)

    Article  Google Scholar 

  5. U. Kurtan, D. Dursun, H. Aydın, M.S. Toprak, A. Baykal, A. Bozkurt, Influence of calcination rate on morphologies and magnetic properties of MnFe2O4 nanofibers. Ceram. Int. 42, 18189–18195 (2016)

    Article  CAS  Google Scholar 

  6. A. Baykal, N. Kasapoğlu, Y. Köseoğlu, M.S. Toprak, H. Bayrakdar, CTAB—assisted hydrothermal method synthesis of NiFe2O4 and its magnetic characterization. J. Alloys Compd. 464(1–2), 514–518 (2008)

    Article  CAS  Google Scholar 

  7. M. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem. Eng. J. 330, 1351–1360 (2017)

    Article  CAS  Google Scholar 

  8. C. Sun, J.S.H. Lee, M. Zhanga, Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. 60, 1252–1265 (2008)

    Article  CAS  Google Scholar 

  9. S. Ghatak, M. Sinha, A.K. Meikap, S.K. Pradhan, Electrical transport behavior of nonstoichiometric magnesium–zinc ferrite. Mater. Res. Bull. 45, 954–960 (2010)

    Article  CAS  Google Scholar 

  10. K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Infrared and structural studies of Mg1−xZnxFe2O4 ferrites. Physica B 407, 795–804 (2012)

    Article  CAS  Google Scholar 

  11. A.Y. Lipare, P.N. Vasambekar, A.S. Vaingankar, AC susceptibility study of CaCl2 doped copper-zinc ferrite system. Bull. Mater. Sci. 26, 493–497 (2003)

    Article  CAS  Google Scholar 

  12. V.R.K. Murthy, S. Chitrashankar, K.V. Reddy, J. Shobanadri, Moessbauer and infrared studies of some nickel-zinc ferrites. Ind. J. Pure Appl. Phys. 16, 79–83 (1978)

    CAS  Google Scholar 

  13. M.A. El Hiti, A.I. El Shora, S.M. Seoud, Hammed, Structural studies for ZnxMg0.8–xNi0.2Fe2O4 ferrites. J. Phase Transitions 56, 35–42 (1995)

    Article  Google Scholar 

  14. G. Aravind, M. Raghasudha, D. Ravinder, R.V. Kumar, Magnetic and dielectric properties of Co doped nano crystalline Li ferrites by auto combustion method. J. Magn. Magn. Mater. 406, 110–117 (2016)

    Article  CAS  Google Scholar 

  15. G.F. Barbosa, F.L.A. Machado, A.R. Rodrigues, M.S. Silva, A. Franco, Enhanced magnetic properties of Zn substituted Mg ferrite. IEEE Trans. Magn. 49, 4562–4564 (2013)

    Article  CAS  Google Scholar 

  16. Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, J. Meng, Preparation of ferrite MFe2O4 (M=Co, Ni) ribbons with nanoporous structure and their magnetic properties. J. Phys. Chem. B 112, 11292–11297 (2008)

    Article  CAS  Google Scholar 

  17. M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215–216, 171–183 (2000)

    Article  Google Scholar 

  18. K.S. Rane, V.M.S. Verenkar, P.Y. Sawant, Ferrite grade iron oxides from ore rejects. Bull. Mater. Sci. 24, 331–338 (2001)

    Article  CAS  Google Scholar 

  19. A. Goldman, Modern Ferrite Technology. (Springer, New York, 2006)

    Google Scholar 

  20. G. Gusmano, G. Montesperelli, P. Nunziante, E. Traversa, Humidity-sensitive electrical response of sintered MgFe2O4. J. Mater. Sci. 28, 6195–6198 (1993)

    Article  CAS  Google Scholar 

  21. Y.L. Liu, Z.M. Liu, Y. Yang, H.F. Yang, G.L. Shen, R.Q. Yu, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sens. Actuators B 107, 600–604 (2005)

    Article  CAS  Google Scholar 

  22. D. Patel, J.Y. Moon, Y. Chang, T.J. Kim, G.H. Lee, Poly(d,l-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: synthesis, characterization and in vivo study as MRI contrast agent. Colloid Surf A 313–314, 91–94 (2008)

    Article  Google Scholar 

  23. M. Zhao, L. Josephson, Y. Tang, R. Weissleder, Magnetic sensors for protease assays. Angew. Chem. Int. Ed. 42, 1375–1378 (2003)

    Article  CAS  Google Scholar 

  24. S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 34, 237–247 (2006)

    Article  CAS  Google Scholar 

  25. P.D. Stevens, J. Fan, H.M.R. Gardimalla, M. Yen, Y. Gao, Superparamagnetic nanoparticle-supported catalysis of suzuki cross-coupling reactions. Org. Lett. 7, 2085–2088 (2005)

    Article  CAS  Google Scholar 

  26. Y. Jun, J. Choi, J. Cheon, Heterostructured magnetic nanoparticles: their versatility and high performance capabilities., Chem. Commun. 12, 1203–1214 (2007). https://doi.org/10.1039/b614735f

    Article  Google Scholar 

  27. A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FT-IR and VSM study. J. Magn. Magn. Mater. 320, 2774–2779 (2008)

    Article  CAS  Google Scholar 

  28. U. Ozur, Y. Alivov, H. Morkoc, Microwave ferrites, part 1: fundamental properties. J. Mater. Sci. 20, 789–834 (2009)

    Google Scholar 

  29. W.V. Aulock, Handbook of Microwaves Ferrites. (Materials Academic Press, New York, 1965)

    Google Scholar 

  30. S.K.A.V. Ahamed, K. Sahib, M. Suganthi, C. Prakash, Study of electrical and magnetic properties in nanosized Ce-Gd doped magnesium ferrite. Int. J. Comput. Appl. 27, 40–45 (2011)

    Google Scholar 

  31. C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Chemical control of superparamagnetic properties of magnesium and n cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc. 122, 6263–6267 (2000)

    Article  CAS  Google Scholar 

  32. Q.M. Wei, J.B. Li, Y.J. Chen, Y.S. Han, X-ray study of cation distribution in NiMn1–x Fe2–x O4 ferrites. Mater. Charact. 47, 247–252 (2001)

    Article  CAS  Google Scholar 

  33. H.H. Joshi, R.G. Kulkarni, Susceptibility, magnetization and Mossbauer studies of the Mg-Zn ferrite system. J. Mater. Sci. 21, 2138–2142 (1986)

    Article  CAS  Google Scholar 

  34. R.V. Upadhyay, R.G. Kulkarni, The magnetic properties of the Mg-Cd ferrite system by Mossbauer spectroscopy. Mater. Res. Bull. 19, 655–661 (1984)

    Article  CAS  Google Scholar 

  35. R.A. Brand, H.G. Gibert, J. Hubsch, J.A. Heller, Ferrimagnetic to spin glass transition in the mixed spinel Mg1+t Fe2−2t TitO4: a Mossbauer and DC susceptibility study. J. Phys. F 15, 1987–2007 (1985)

    Article  CAS  Google Scholar 

  36. B.D. Cullity, Elements of X-Ray Diffraction. (Addison-Wesley, London, 1959)

    Google Scholar 

  37. M.F. Kuo, Y.H. Hung, J.Y. Huang, C.C. Huang, Substitution effects on magnetic properties of Mg1.3–xMnxAlyFe1.8–yO4 ferrite. AIP Adv. 7, 056104 (2017)

    Article  Google Scholar 

  38. M.D. Rahaman, K.K. Nahar, M.N.I. Khan, A.K.M.A. Hossain, Synthesis, structural and electromagnetic properties of Mn0.5Zn0.5–xMgxFe2O4 (x = 0.0, 0.1) polycrystalline ferrites. Physica B 481, 156–164 (2016)

    Article  CAS  Google Scholar 

  39. P.J. van der Zaag, M. Kolenbrander, M.T. Rekveldt, The effect of intragranular domain walls in MgMnZn-ferrite. J. Appl. Phys. 83, 6870–6872 (1998)

    Article  Google Scholar 

  40. V.M. Khot, A.B. Salunkhe, N.D. Thorat, M.R. Phadatare, S.H. Pawar, Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia application. J. Magn. Magn. Mater. 332, 48 (2013)

    Article  CAS  Google Scholar 

  41. A.U. Rashid, P. Southern, J.A. Darr, S. Awan, S. Manzoor, Strontium hexaferrite (SrFe12O19) based composites for hyperthermia application. J. Magn. Magn. Mater. 344, 134 (2013)

    Article  CAS  Google Scholar 

  42. K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzainb, M. Shongwe, Infrared and structural studies of Mg1−xZnxFe2O4 ferrite. Physica B 407, 795 (2012)

    Article  CAS  Google Scholar 

  43. M.M. Haque, M. Huq, M.A. Hakim, Effect of Zn2+ substitution on the magnetic properties of Mg1−xZnxFe2O4 ferrites. Physica B 404, 3915–3921 (2009)

    Article  Google Scholar 

  44. S.A. Mazen, S.F. Mansour, H.M. Zaki, Some physical and magnetic properties of Mg-Zn ferrite. Cryst. Res. Technol. 38, 471–478 (2003)

    Article  CAS  Google Scholar 

  45. H. Kavas, A. Baykal, M.S. Toprak, Y. Köseoğlu, M. Sertkol, B. Aktaş, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-Assisted hydrothermal route. J. Alloys Compd. 479, 49–55 (2009)

    Article  CAS  Google Scholar 

  46. K.B. Modi, H.H. Joshi, R.G. Kulkarni, Magnetic and electrical properties of Al3+–substituted MgFe2O4. J. Mater. Sci. 31, 1311–1317 (1996)

    Article  CAS  Google Scholar 

  47. M.G. Buerger, Crystal Structure Analysis. (Wiley, New York, 1960)

    Google Scholar 

  48. H. Ohnishi, T. Teranishi, Crystal distortion in copper ferrite-chromite series. J. Phys. Soc. Jpn. 16, 35–43 (1961)

    Article  CAS  Google Scholar 

  49. A.A. Pandit, S.S. More, R.G. Dorik, K.M. Jadhav, Structural and magnetic properties of Co1+ySnyFe2−2y−xCrxO4 ferrite system. Bull. Mater. Sci. 26, 517–521 (2003)

    Article  CAS  Google Scholar 

  50. P. Porta, F.S. Stone, R.G. Turner, The distribution of nickel ions among octahedral and tetrahedral sites in NiAl2O4-MgAl2O4 solid solutions. J. Solid State Chem. 11, 135–147 (1974)

    Article  CAS  Google Scholar 

  51. G.B. Kadam, S.B. Shelke, K.M. Jadhav, Structural and electrical properties of Sm3+ doped Co-Zn Ferrite. J. Electron. Electron. Eng. 1, 15–25 (2010)

    Google Scholar 

  52. H. Kavas, A. Baykal, M.S. Toprak, Y. Köseoglu, M. Sertkol, B. Aktas, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J. Alloys Compd. 479, 49 (2009)

    Article  CAS  Google Scholar 

  53. S. Geller, Comments on “molecular-field theory for randomly substituted ferrimagnetic garnet systems” by I. Nowik. Phys. Rev. 2, 980–985 (1969)

    Article  Google Scholar 

  54. D.E. Madsen, M.F. Hansen, S. Mørup, The correlation between superparamagnetic blocking temperatures and peak temperatures obtained from ac magnetization measurements. J. Phys. 20, 1–6 (2008)

    Google Scholar 

  55. J. Nogués, V. Skumryev, J. Sort, S. Stoyanov, D. Givord, Shell-driven magnetic stability in core-shell nanoparticles. Phys. Rev. Lett. 97, 1–4 (2006)

    Article  Google Scholar 

  56. K.H. Fischer, J.A. Hertz, Spin Glasses, vol. 1, (Cambridge University Press, Cambridge, 1993

    Google Scholar 

  57. M. Tadić, V. Kusigerski, D. Marković, M. Panjan, I. Milošević, V. Spasojević, Highly crystalline superparamagnetic iron oxide nanoparticles (SPION) in a silica matrix. J. Alloys Compd. 525, 28–33 (2012)

    Article  Google Scholar 

  58. M. Rahimi, P. Kameli, M. Ranjbar, H. Salamati, The effect of polyvinyl alcohol (PVA) coating on structural, magnetic properties and spin dynamics of Ni0.3Zn0.7Fe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 347, 139–145 (2013)

    Article  CAS  Google Scholar 

  59. J. Mohapatra, A. Mitra, D. Bahadur, M. Aslam, Superspin glass behavior of self-interacting CoFe2O4 nanoparticles. J. Alloys Compd. 628, 416–423 (2015)

    Article  CAS  Google Scholar 

  60. G.F. Goya, M.P. Morales, Superspin glass behavior of self-interacting CoFe2O4 nanoparticles. J. Meta. Nanocryst. Mater. 20–21, 673–678 (2004)

    Article  Google Scholar 

  61. V.L. Calero-Ddel, C. Rinaldi, Synthesis and magnetic characterization of cobalt-substituted ferrite (CoxFe3−xO4) nanoparticles. J. Magn. Magn. Mater. 314, 60–67 (2007)

    Article  Google Scholar 

  62. N. Hanh, O.K. Quy, N.P. Thuy, L.D. Tung, L. Spinu, Synthesis of cobalt ferrite nanocrystallites by the forced hydrolysis method and investigation of their magnetic properties. Physica B 327, 382–384 (2003)

    Article  CAS  Google Scholar 

  63. A. Repko, J. Vejpravová, T. Vacková, D. Zákutná, D. Nižňanský, Oleate-based hydrothermal preparation of CoFe2O4 nanoparticles, and their magnetic properties with respect to particle size and surface coating. J. Magn. Magn. Mater. 390, 142–151 (2015)

    Article  CAS  Google Scholar 

  64. M. Coskun, M.M. Can, O.D. Coskun, M. Korkmaz, T. Firat, Surface anisotropy change of CoFe2O4 nanoparticles depending on thickness of coated SiO2 shell. J. Nanopart Res. 14, 1–9 (2012)

    Article  Google Scholar 

  65. H. Shenker, Magnetic anisotropy of cobalt ferrite (Co1.01Fe2.00O3.62) and nickel cobalt ferrite (Ni0.72Fe0.20Co0.08Fe2O4). Phys. Rev. 107, 1246–1249 (1957)

    Article  CAS  Google Scholar 

  66. J. Dormann, L. Bessais, D. Fiorani, A dynamic study of small interacting particles: superparamagnetic model and spin-glass laws. J. Phys. C 21, 2015–2034 (1988)

    Article  Google Scholar 

  67. J. Dormann, D. Fiorani, E. Tronc, On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results. J. Magn. Magn. Mater. 202, 251–267 (1999)

    Article  CAS  Google Scholar 

  68. D.H. Kim, D.E. Nikles, C.S. Brazel, Synthesis and characterization of multifunctional chitosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials 3, 4051–4065 (2010)

    Article  CAS  Google Scholar 

  69. P. Kinnari, R. Upadhyay, R. Mehta, Magnetic properties of Fe–Zn ferrite substituted ferrofluids. J. Magn. Magn. Mater. 252, 35–38 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Almessiere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almessiere, M.A., Dabagh, S., Slimani, Y. et al. Investigation of Structural and Magnetic Properties on Mg1−xZnxFe2−xAlxO4 (0.0 ≤ x ≤ 0.8) Nanoparticles. J Inorg Organomet Polym 28, 942–953 (2018). https://doi.org/10.1007/s10904-017-0764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0764-9

Keywords

Navigation