Solution Processed Inverted Organic Bulk Heterojunction Solar Cells Under Ambient Air-Atmosphere

  • A. Arulraj
  • S. Bhuvaneshwari
  • G. Senguttuvan
  • M. Ramesh


The effect of air processed polymer solar cells fabricated from conjugated polymers and fullerene derivatives poly (3-hexylthiophene) and [6, 6]-phenyl-C61-butyric acid methyl ester functioning as donor and acceptor materials. The device architecture was (Cs2CO3/P3HT: PCBM/V2O5/Al). The spin rate of the Cs2CO3 and P3HT: PCBM layer was subjected to be varied and its device performance were evaluated. The basic characterizations such as UV–Vis spectrum, PL spectra, FTIR, XRD, FESEM, EDAX, AFM and I–V studies were performed for all the materials used for fabricating the devices. The performance of the device demonstrated under air-processed conditions delivers a photo-conversion efficiency of 0.1% initially. The scaling up of the self-organized active layer can be achieved by varying and controlling the spin casting and the evaporation rate at room temperature. After varying the spin conditions the fabricated devices were tested under the same conditions and photo-conversion efficiency enhances from 0.1 to 1.43% with the Jsc of 5.6 mA cm−2; Voc of 0.55 V and FF of 0.454. The device performance can be further enhanced by controlling the exposure of the electrode materials by masking.


Organic solar cells Spin rate Solvents Air-processed and efficiency 



Dr. M. Ramesh gratefully acknowledges Department of Science and Technology (DST) for awarding INSPIRE Faculty [DST/INSPIRE/04/2015/002860] and Director, CSIR-CECRI for implementation of award. A. Arulraj extends his sincere thanks to the Director, CSIR-CECRI, Karaikudi for permitting to carry out the research work. The authors acknowledge Central Instrumentation Facility (CIF), CSIR-CECRI, Karaikudi for their support in characterizing the sample.


  1. 1.
    G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photon. 6, 153–161 (2012)CrossRefGoogle Scholar
  2. 2.
    M.C. Scharber, D. Mühlbacher, D. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)CrossRefGoogle Scholar
  3. 3.
    H.D. Ko, J.R. Tumbleston, L. Zhang, S. Williams, J.M. DeSimone, R. Lopez, E.T. Samulski, Photonic crystal geometry for organic solar cells. Nano Lett. 9, 2742–2746 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Rao, P.C.Y. Chow, S. Gélinas, C.W. Schlenker, Z.C. Li, L.H. Yip, A.K.-Y. Jen, D.S. Ginger, R. Friend, The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500, 435–439 (2013)CrossRefGoogle Scholar
  5. 5.
    S.B. Darling, F. You, The case for organic photovoltaics. RSC Adv. 3, 17633–17648 (2013)CrossRefGoogle Scholar
  6. 6.
    G. Yu, J. Gao, C.J. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 15, 1789–1791 (1995)CrossRefGoogle Scholar
  7. 7.
    J.W. Chen, Y. Cao, Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 42, 1709–1718 (2009)CrossRefGoogle Scholar
  8. 8.
    Y.F. Li, Y.P. Zou, Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv. Mater. 20, 2952–2958 (2008)CrossRefGoogle Scholar
  9. 9.
    F.C. Krebs, S.A. Gevorgyan, J. Alstrup, A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442–5451 (2009)CrossRefGoogle Scholar
  10. 10.
    N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992)CrossRefGoogle Scholar
  11. 11.
    K.R. Reddy, L. Kwang-Pill, I.A. Gopalan, Self-assembly directed synthesis of poly(ortho-toluidine)-metal(gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)CrossRefGoogle Scholar
  12. 12.
    K.R. Reddy, C.B. Sina, S.K. Ryua, C.J. Kimb, H. Chung, L. Youngil, Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth. Methods 159, 595–603 (2009)CrossRefGoogle Scholar
  13. 13.
    Z. Yu-Ping, L. Se-Hee, K.R. Reddy, A.I. Gopalan, L. Kwang-Pill, Synthesis and characterization of core–shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites. J. Appl. Polym. Sci. 104, 2743–2750 (2007)CrossRefGoogle Scholar
  14. 14.
    K.R. Reddy, L. Kwang-Pill, A.I. Gopalan, A novel electrically conductive and ferromagnetic composites of poly(aniline-co-aminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. J. Appl. Polym. Sci. 106, 1181–1191 (2007)CrossRefGoogle Scholar
  15. 15.
    K.R. Reddy, A.I. Gopalan, L. Kwang-Pill, M.A. Showkat, Facile synthesis of hollow spheres of sulfonated polyanilines. Polym. J. 38, 349–354 (2006)CrossRefGoogle Scholar
  16. 16.
    K.R. Reddy, L. Kwang-Pill, L. Youngil, I.A. Gopalan, Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater. Lett. 62, 1815–1818 (2008)CrossRefGoogle Scholar
  17. 17.
    K.R. Reddy, L. Kwang-Pill, I.A. Gopalan, A self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloid Surf. A 320, 49–56 (2008)CrossRefGoogle Scholar
  18. 18.
    K.R. Reddy, H.M. Jeong, L. Youngil, V.A. Raghu, Synthesis of MWCNTs-core/thiophene polymer–sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J. Polym. Sci. Polym. Chem. A 48, 1477–1484 (2010)CrossRefGoogle Scholar
  19. 19.
    S.-H. Liao, H.-J. Jhuo, Y.-S. Cheng, S.-A. Chen, Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (ptb7-th) for high performance. Adv. Mater. 25, 4766–4771 (2013)CrossRefGoogle Scholar
  20. 20.
    J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, J.-X. Tang, Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater. 27, 1035–1041 (2015)CrossRefGoogle Scholar
  21. 21.
    B. Kan, Q. Zhang, M. Li, X. Wan, W. Ni, G. Long, Y. Wang, X. Yang, H. Feng, Y. Chen, Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc. 136, 15529–15532 (2014)CrossRefGoogle Scholar
  22. 22.
    R.R. Søndergaard, M. Hosel, F.C. Krebs, Roll-to-Roll fabrication of large area functional organic materials. J. Polym. Sci. B 51, 16–34 (2013)CrossRefGoogle Scholar
  23. 23.
    F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394–412 (2009)CrossRefGoogle Scholar
  24. 24.
    R. Rodriguesa, Q. Ferreira, L.A. Mendon, J. Morgado, Template role of polyhexylthiophene nanowires on efficient bilayer photovoltaic cells. Synth. Methods 190, 72–78 (2014)CrossRefGoogle Scholar
  25. 25.
    J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Betancur, M. Maymo, X. Elias, L.T. Vuong, J. Martorell, Sputtered NiO as electron blocking layer in P3HT: PCBM solar cells fabricated in ambient air. Sol. Energy Mater. Sol. Cells 95, 735–739 (2011)CrossRefGoogle Scholar
  27. 27.
    E.S.R. Bovill, J. Griffin, T. Wang, J.W. Kingsley, H. Yi, A. Iraqi, A.R. Buckley, D.G. Lidzey, Air processed organic photovoltaic devices incorporating a MoOx anode buffer layer. Appl. Phys. Lett. 102, 183303 (2013)CrossRefGoogle Scholar
  28. 28.
    S.K. Hau, H.L. Yip, N.S. Baek, J. Zou, K. O’Malley, A.K. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92, 253301 (2008)CrossRefGoogle Scholar
  29. 29.
    G. Terán-Escobar, J. Pampel, J.M. Caicedo, M. Lira-Cantú, Low-temperature, solution-processed, layered V2O5 hydrate as the hole-transport layer for stable organic solar cells. Energy Environ. Sci. 6, 3088–3098 (2013)CrossRefGoogle Scholar
  30. 30.
    M.J.M. Levi, B. Mithun, W. Qi, G.Y. Sang, E.N. Evgueni, E.M. Sarah, Three-dimensional morphology control yielding enhanced hole mobility in air-processed organic photovoltaics: demonstration with grazing-incidence wide-angle X-ray scattering. ACS Appl. Mater. Interfaces 9, 22764–22772 (2017)CrossRefGoogle Scholar
  31. 31.
    Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. Mcculloch, S.C. Ha, M. Ree, A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat. Mater. 5, 197–203 (2006)CrossRefGoogle Scholar
  32. 32.
    G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blend. Nat. Mater. 4, 864–868 (2005)CrossRefGoogle Scholar
  33. 33.
    I. Constantinou, T.H. Lai, D. Zhao, E.D. Klump, J.J. Deininger, C.K. Lo, J.R. Reynolds, F. So, High efficiency air-processed dithienogermole-based polymer solar cells. ACS Appl. Mater. Interfaces 7, 4826–4832 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Campoy-Quiles, Y. Kanai, A. El-Basaty, H. Sakai, H. Murata, Ternary mixing: a simple method to tailor the morphology of organic solar cells. Org. Electron. 10, 1120–1132 (2009)CrossRefGoogle Scholar
  35. 35.
    S.S. Van Bavel, M. Barenklau, G. de With, H. Hoppe, J. Loos, P3HT/PCBM bulk heterojunction solar cells: impact of blend composition and 3D morphology on device performance. Adv. Funct. Mater. 20, 1458–1463 (2010)CrossRefGoogle Scholar
  36. 36.
    V. Shrotriya, J. Ouyang, R.J. Tseng, G. Li, Y. Yang, Absorption spectra modification in poly (3-hexylthiophene): methanofullerene blend thin films. Chem. Phys. Lett. 411, 138–143 (2005)CrossRefGoogle Scholar
  37. 37.
    M.E. Nicho, H. Hu, C. Lopez-Mata, J. Escalante, Synthesis of derivatives of polythiophene and their application in an electrochromic device. Sol. Energy Mater. Sol. Cells 82, 105–118 (2004)CrossRefGoogle Scholar
  38. 38.
    P.S. Chintwar, H.L. Greene, Interaction of chlorinated ethylenes with chromium exchanged zeolite Y: Anin Situ FT-IR Study. J. Catal. 165, 12–21 (1991)CrossRefGoogle Scholar
  39. 39.
    V.E. Suprunov, A.A. Ivanov, Adsorption forms of phenol on Cr2O3 and their reactivity. React. Kinet. Catal. Lett. 33, 75–80 (1987)CrossRefGoogle Scholar
  40. 40.
    X. Yang, J. Loos, S.C. Veenstra, W.J. Verhees, M.M. Wienk, J.M. Kroon, M.A. Michels, R.A. Janssen, Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 5, 579–583 (2005)CrossRefGoogle Scholar
  41. 41.
    Z. Hu, J. Zhang, Y. Zhu, High-performance and air-processed polymer solar cells by room-temperature drying of the active layer. Appl. Phys. Lett. 102, 043307 (2013)CrossRefGoogle Scholar
  42. 42.
    W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Physics, University College of Engineering – BIT CampusAnna UniversityTiruchirappalliIndia
  2. 2.Department of PhysicsAlagappa Government Arts CollegeKaraikudiIndia
  3. 3.Functional Materials DivisionCSIR-Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations