Skip to main content
Log in

Interaction Studies of Ammonia Gas Molecules on Borophene Nanosheet and Nanotubes: A Density Functional Study

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The structural stability of borophene nanosheet and nanotubes, including electronic properties was explored using the density-functional-theory technique. Moreover, the stability of isolated pristine borophene nanosheet and nanotube is substantiated with the help of formation energy. The energy band gap of pristine borophene material is found to be semi-metallic. The interaction of NH3 molecules on borophene material is analyzed using Bader charge transfer, adsorption energy, density-of-states spectrum, energy band gap and percentage of average-energy-gap variation. The interaction of hazardous NH3 gas molecules on borophene nanosheet and nanotubes is studied at an atomistic level. The interaction of nitrogen atom in ammonia molecules on borophene material is observed to be the prominent adsorption site. The findings suggest that borophene nanosheets as well as nanotubes can be used as a chemi-resistor for the detection of ammonia molecules present in the atmosphere.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  CAS  Google Scholar 

  2. A.R. Oganov, J. Chen, C. Gatti, Y.-Z. Ma, Y.-M. Ma, C.W. Glass, Z. Liu, T. Yu, O.O. Kurakevych, V.L. Solozhenko, Ionic high-pressure form of elemental boron. Nature 457 863–867 (2009)

    Article  CAS  Google Scholar 

  3. N. Vast, S. Baroni, G. Zerah, J.M. Besson, A. Polian, M. Grimsditch, J.C. Chervin, Lattice dynamics of icosahedral α-boron under pressure. Phys. Rev. Lett. 78, 693 (1997)

    Article  Google Scholar 

  4. H. Tang, I.B. Sohrab, First-principles study of boron sheets and nanotubes. Phys. Rev. B 82, 115412 (2010)

    Article  Google Scholar 

  5. A.J. Mannix, X.F. Zhou, B. Kiraly, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015)

    Article  CAS  Google Scholar 

  6. X. Yang, Y. Ding, J. Ni, Ab initio prediction of stable boron sheets and boron anotubes: structure, stability, and electronic properties. Phys. Rev. B 77, 041402 (2008)

    Article  Google Scholar 

  7. B.J. Feng, J. Zhang, Q. Zhong, W.B. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K.H. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016)

    Article  CAS  Google Scholar 

  8. I. Boustani, A. Quandt, Nanotubes of bare boron clusters: ab initio and density functional study. Europhys. Lett. 39, 527–532 (1997)

    Article  CAS  Google Scholar 

  9. I. Boustani, New quasi-planar surfaces of bare boron. Surf. Sci. 370, 355–363 (1997)

    Article  CAS  Google Scholar 

  10. B. Kiran, S. Bulusu, H.-J. Zhai, S. Yoo, X.C. Zeng, L.-S. Wang, Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci. USA 102, 961–964 (2005)

    Article  CAS  Google Scholar 

  11. E. Oger, N.R.M. Crawford, R. Kelting, P. Weis, M.M. Kappes, R. Ahlrichs, Boron cluster cations: transition from planar to cylindrical structures. Angew. Chem. Int. Ed. 46, 8503–8506 (2007)

    Article  CAS  Google Scholar 

  12. A.K. Singh, A. Sadrzadeh, B.I. Yakobson, Probing properties of boron R-tubes by ab initio calculations. Nano Lett. 8, 1314–1317 (2008)

    Article  CAS  Google Scholar 

  13. H. Sun, Q. Li, X.G. Wana, First-principles study of thermal properties of borophene. Phys. Chem. Chem. Phys. 18, 14927 – 14932 (2016)

    Article  CAS  Google Scholar 

  14. Y. Zhao, S. Zeng, N. Jun, Superconductivity in two-dimensional boron allotropes. Phys. Rev. B 93, 014502 (2016)

    Article  Google Scholar 

  15. X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao, A.Y. Shengyuan, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340–15347 (2016)

    Article  CAS  Google Scholar 

  16. F. Liu, C. Shen, Z. Su, X. Ding, S. Deng, J. Chen, N. Xu, H. Gao, Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties. J. Mater. Chem. 20, 2197–2205 (2010)

    Article  CAS  Google Scholar 

  17. D. Ciuparu, R.F. Klie, Y. Zhu, L. Pfefferle, Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108, 3967–3969 (2004)

    Article  CAS  Google Scholar 

  18. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  19. R. Chandiramouli, First-principles insights on adsorption properties of NH3 on silicane nanoribbon and nanoring. Appl. Surf. Sci. 426, 1221–1231 (2017)

    Article  CAS  Google Scholar 

  20. V. Nagarajan, R. Chandiramouli, Investigation on electronic properties of functionalized arsenene nanoribbon and nanotubes: a first-principles study. Chem. Phys. 495, 35–41 (2017)

    Article  CAS  Google Scholar 

  21. A. Rubio, J. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081–5084 (1994)

    Article  CAS  Google Scholar 

  22. R.T. Senger, S. Dag, S. Ciraci, Chiral single-wall gold nanotubes. Phys. Rev. Lett. 93, 196807 (2004)

    Article  CAS  Google Scholar 

  23. V. Bezugly, J. Kunstmann, B. Grundkotter-Stock, T. Frauenheim, T. Niehaus, G. Cuniberti, Highly conductive boron nanotubes: transport structural stabilities. ACS Nano 5, 4997–5005 (2011)

    Article  CAS  Google Scholar 

  24. V. Nagarajan, R. Chandiramouli, Borophene nanosheet molecular device for detection of ethanol: a first-principles study. Comput. Theor. Chem. 1105, 52–60 (2017)

    Article  CAS  Google Scholar 

  25. V. Nagarajan, R. Chandiramouli, Sensing properties of monolayer borophane nanosheet towards alcohol vapors: a first-principles study. J. Mol. Graph. Modell. 73, 208–216 (2017)

    Article  CAS  Google Scholar 

  26. S. Bibi, H. Ullah, S.M. Ahmad, H.A. Shah, S. Bilal, A.A. Tahir et al., Molecular and electronic structure elucidation of polypyrrole gas sensors. J. Phys. Chem. C 119(28), 15994–16003 (2015)

    Article  CAS  Google Scholar 

  27. H. Ullah, A.A. Shah, S. Bilal, K. Ayub, DFT study of polyaniline NH3, CO2, and CO gas sensors: comparison with recent experimental data. J. Phys. Chem. C 117, 23701–23711 (2013)

    Article  CAS  Google Scholar 

  28. H. Ullah, K. Ayub, Z. Ullah, M. Hanif, R. Nawaz, A.A. Shah et al., Theoretical insight of polypyrrole ammonia gas sensor. Synth. Methods 172, 14–20 (2013)

    Article  CAS  Google Scholar 

  29. H. Ullah, A.A. Shah, S. Bilal, K. Ayub, Doping and dedoping processes of polypyrrole: DFT study with hybrid functionals. J. Phys. Chem. C 118, 17819–17830 (2014)

    Article  CAS  Google Scholar 

  30. H. Ullah, A.A. Shah, K. Ayub, S. Bilal, Density functional theory study of poly(o-phenylenediamine) oligomers. J. Phys. Chem. C 117, 4069–4078 (2013)

    Article  CAS  Google Scholar 

  31. M. Kamran, H. Ullah, A. Anwar-ul-Haq, S. Shah, A.A. Bilal, K. Tahir, Ayub, Combined experimental and theoretical study of poly(aniline-co-pyrrole) oligomer. Polymer 72, 30–39 (2015)

    Article  CAS  Google Scholar 

  32. Z. Fazl-i-Sattar, A. Ullah Ata-ur-Rahman, M. Rauf, A.A. Tariq, K. Tahir, H. Ayub, Ullah, Phytochemical, spectroscopic and density functional theory study of Diospyrin, and non-bonding interactions of Diospyrin with atmospheric gases. Spectrochim. Acta A 141, 71–79 (2015)

    Article  CAS  Google Scholar 

  33. H. Ullah, A.A. Tahir, T.K. Mallick, Polypyrrole/TiO2 composites for the application of photocatalysis. Sens. Actuators B 241, 1161–1169 (2017)

    Article  CAS  Google Scholar 

  34. H. Ullah, Inter-molecular interaction in polypyrrole/TiO2: a DFT study. J.Alloys Compd. 692, 140–148 (2017)

    Article  CAS  Google Scholar 

  35. A.A. Peyghan, H. Soleymanabadi, Z. Bagheri, Hydrogen release from NH3 in the presence of BN graphene: DFT studies‏. J. Mex. Chem. Soc. 59(1), 67–73 (2015)

    CAS  Google Scholar 

  36. A.A. Peyghan, S.F. Rastegar, N.L. Hadipour, DFT study of NH3 adsorption on pristine, Ni- and Si-doped graphynes. Phys. Lett. A 378, 2184–2190 (2014)

    Article  CAS  Google Scholar 

  37. A.A. Peyghan, M.B. Tabar, J. Kakemam, NH3 on a BC3 nanotube: effect of doping and decoration of aluminum. J. Mol. Model. 19, 3793–3798 (2013)

    Article  CAS  Google Scholar 

  38. J. Beheshtian, A.A. Peyghan, Z. Bagheri, Ab initio study of NH3 and H2O adsorption on pristine and Na-doped MgO nanotubes. Struct. Chem. 24, 165–170 (2013)

    Article  CAS  Google Scholar 

  39. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745 (2002)

    Article  CAS  Google Scholar 

  40. G. Roman-Perez, J.M. Soler, Efficient implementation of a van der waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009)

    Article  Google Scholar 

  41. J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533 (1996)

    Article  CAS  Google Scholar 

  42. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms,molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)

    Article  CAS  Google Scholar 

  43. L. Li, P. Jin, D.-E. Jiang, L. Wang, S.B. Zhang, J. Zhao, Z.J. Chen, B80 and B101-103 clusters: remarkable stability of the core-shell structures established by validated density functionals. Chem. Phys. 136(7), 074302 (2012)

    Google Scholar 

  44. R. Bader, Atoms in Molecules: A Quantum Theory. (Oxford University Press, New York, 1990)

    Google Scholar 

  45. V. Nagarajan, R. Chandiramouli, Interaction of alcohols on monolayer stanane nanosheet: a first-principles investigation. Appl. Surf. Sci. 419, 9–15 (2017)

    Article  CAS  Google Scholar 

  46. J. Yuan, L.W. Zhang, K.M. Liew, Effect of grafted amine groups on in-plane tensile properties and high temperature structural stability of borophene nanoribbons. RSC Adv. 5, 74399–74407 (2015)

    Article  CAS  Google Scholar 

  47. F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, A. Du, Graphene-like two dimensional ionic boron with double Dirac cones at ambient condition. Nano Lett. 16, 3022–3028 (2016)

    Article  CAS  Google Scholar 

  48. J. Beheshtian, M. Noei, H. Soleymanabadi, A.A. Peyghan, Ammonia monitoring by carbon nitride nanotubes: a density functional study. Thin Solid Films 534, 650–654 (2013)

    Article  CAS  Google Scholar 

  49. A. Ullah Ata-ur-Rahman, Z. Fazl-i-Sattar, A. Rauf, M. Yaseen, W. Hassan, M. Tariq, K. Ayub, A.A. Tahir, H. Ullah, Density functional theory and phytochemical study of 8-hydroxyisodiospyrin. J. Mol. Struct. 1095, 69–78 (2015)

    Article  Google Scholar 

  50. A.A. Javad Beheshtian, N.L. Hadipour, Interaction of NH3 with aluminum nitride nanotube: electrostatic vs. covalent. Physica E 43, 1717–1719 (2011)

    Article  Google Scholar 

  51. J. Beheshtian, I. Ravaei, Toxic CO detection by Li-encapsulated fullerene-like BeO. Struct. Chem. (2017). 10.1007/s11224-017-1022-z

    Google Scholar 

  52. M. Eslami, V. Vahabi, A.A. Peyghan, Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: a computational study. Physica E 76, 6–11 (2016)

    Article  CAS  Google Scholar 

  53. V. Nagarajan, R. Chandiramouli, Interaction of NH3 gas on α-MoO3 nanostructures: a DFT investigation. Condens. Matter Phys. 20, 23705 (2017)

    Article  Google Scholar 

  54. M. Noei, A.A. Peyghan, A DFT study on the sensing behavior of a BC2N nanotube toward formaldehyde. J. Mol. Model. 19, 3843–3850 (2013)

    Article  CAS  Google Scholar 

  55. H. Ullah, A.-H.A. Shah, S. Bilal, K. Ayub, DFT study of polyaniline NH3, CO2, and CO gas sensors: comparison with recent experimental data. J. Phys. Chem. C 117, 23701–23711 (2013)

    Article  CAS  Google Scholar 

  56. R. Chandiramouli, B.G. Jeyaprakash, Operating temperature dependent ethanol and formaldehyde detection of spray deposited mixed CdO and MnO2 thin films. RSC Adv. 5, 43930–43940 (2015)

    Article  CAS  Google Scholar 

  57. A.S. Kootenaei, G. Ansari, B36 borophene as an electronic sensor for formaldehyde: quantum chemical analysis. Phys. Lett. A 380, 2664–2668 (2016)

    Article  Google Scholar 

  58. B. Mortazavi, A. Dianat, O. Rahaman, G. Cuniberti, T. Rabczuk, Borophene as an anode material for Ca, Mg, Na or Li ion storage: a first-principle study. J. Power Sources 329, 456–461 (2016)

    Article  CAS  Google Scholar 

  59. V. Nagarajan, R. Chandiramouli, Adsorption of NO2 molecules on armchair phosphorene nanosheet for nano sensor applications: a first-principles study. J. Mol. Graph. Modell. 75, 365–374 (2017)

    Article  CAS  Google Scholar 

  60. J. Beheshtian, A.A. Peyghan, Z. Bagheri, Arsenic interactions with a fullerene-like BN cage in the vacuum and aqueous phase. J. Mol. Model. 19, 833–837 (2013)

    Article  CAS  Google Scholar 

  61. R. Chandiramouli, V. Nagarajan, Borospherene nanostructure as CO and NO sensor: a first-principles study. Vacuum 142, 13–20 (2017)

    Article  CAS  Google Scholar 

  62. S. Bibi, H. Ullah, S.M. Ahmad, A.-H.A. Shah, S. Bilal, A.A. Tahir, K. Ayub, Molecular and electronic structure elucidation of polypyrrole gas sensors. J. Phys. Chem. C 119, 15994–16003 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1572 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, V., Chandiramouli, R. Interaction Studies of Ammonia Gas Molecules on Borophene Nanosheet and Nanotubes: A Density Functional Study. J Inorg Organomet Polym 28, 920–931 (2018). https://doi.org/10.1007/s10904-017-0761-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0761-z

Keywords

Navigation