Phase Transformation and Morphology Evolution Characteristics of Hydrothermally Prepared Boehmite Particles

  • Chunxi Hai
  • Lijuan Zhang
  • Yuan Zhou
  • Xiufeng Ren
  • Jianghua Liu
  • Jinbo Zeng
  • Hongbo Ren


Under hydrothermal condition, benefiting from dehydration and in situ nucleation processes, well-crystallized 3-dimensional (3D) boehmite nanoparticles with an average diameter of around 400 nm was directly converted from gibbsite phase in aluminum oxyhydroxide powder without adding any kinds of other assistants. Through investigation the influences of different factors, it is concluded that, hydrothermal treating temperature, time and initial slurry pH play an important role in obtaining well-crystallized boehmite particles. Besides XRD and FE-SEM, TG/DTA, FT-IR and Raman spectra were also employed to follow and confirm the formation of boehmite, which is useful for optimizing the synthesis condition. Moreover, after the hydrothermal treatment under the optimum condition, because as-prepared 3D boehmite nanoparticles have abundant surface oxygen anionic vacancies (F and F+-centers), thus endowing it optical band gap around 5.41 eV. This technique is significant and useful for developing a new opportunity for large scale production of well-crystallized boehmite powder with high purity from aluminum oxyhydroxide powder.


Hydrothermal treating Boehmite Gibbsite Surface defects Phase transformation Optical properties 



This study was partially financially supported by the National Natural Science Foundation of China (24101210), Qinghai Science &Technology Projects (2016-GX-102), Youth Innovation Promotion Association CAS (2016376), CAS “light of West China” program, Hundred-Talent Program (Chinese academy of Sciences) and open project of State Key Laboratory of Chemical Resource Engineering (CRE-2017-c-202).

Compliance with Ethical Standards

Conflict of interest

There are no conflicts of interest which might bias or otherwise influence this work by the authors.


  1. 1.
    B. Zhu, B. Fang, X. Li, Ceram. Int. 36, 2493 (2010)CrossRefGoogle Scholar
  2. 2.
    W. Cai, J. Yu, S. Gu, M. Jaroniec, Cryst. Growth Des. 10, 3977 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Ma, Y. Zhu, Z. Xu, Mater. Lett. 61, 1812 (2007)CrossRefGoogle Scholar
  4. 4.
    T.C. Alex, R. Kumar, S.K. Rou, S.P. Mehrotra, Powder Technol. 208, 128 (2011)CrossRefGoogle Scholar
  5. 5.
    H.K. Farag, F. Endres, J. Mater. Chem. 18, 442 (2008)CrossRefGoogle Scholar
  6. 6.
    R.W. Hicks, T.J. Pinnavaia, Chem. Mater. 15, 78 (2003)CrossRefGoogle Scholar
  7. 7.
    G. Hota, B.R. Kumar, W.J. Ng, S. Ramakrishna, J. Mater. Sci. 43, 212 (2008)CrossRefGoogle Scholar
  8. 8.
    Q. Liu, A. Wang, X. Wang, P. Gao, X. Wang, T. Zhang, Microporous Mesoporous Mater. 111, 323 (2008)CrossRefGoogle Scholar
  9. 9.
    X. Chen, H. Huh, S. Lee, Nanotechnology 18, 285608 (2007)CrossRefGoogle Scholar
  10. 10.
    X. Chen, S. Lee, Chem. Phys. Lett. 438, 279 (2007)CrossRefGoogle Scholar
  11. 11.
    Y. Feng, W. Lu, L. Zhang, X. Bao, B. Yue, Y. Lv, X. Shang, Cryst. Growth Des. 8, 1426 (2008)CrossRefGoogle Scholar
  12. 12.
    H. Hou, Y. Xie, Q. Yang, Q. Guo, C. Tan, Nanotechnology 16, 741 (2005)CrossRefGoogle Scholar
  13. 13.
    T. Kim, J. Lian, J. Ma, X. Duan, W. Zheng, Cryst. Growth Des. 10, 2928 (2010)CrossRefGoogle Scholar
  14. 14.
    X. Yu, J. Yu, B. Cheng, M. Jaroniec, J. Phys. Chem. C 113, 17527 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Li, J. Liu, Z. Jia, Mater. Lett. 60, 3586 (2006)CrossRefGoogle Scholar
  16. 16.
    S. Shen, Q. Chen, P. Chow, G. Tan, X. Zeng, Z. Wang, R. Tan, J. Phys. Chem. C 111, 700 (2007)CrossRefGoogle Scholar
  17. 17.
    O.V. Al’myasheva, E.N. Korytkova, A.V. Masolv, V.V. Gusarov, Inorg. Mater. 41, 460 (2005)CrossRefGoogle Scholar
  18. 18.
    Z. Tang, J. Liang, X. Li, J. Li, H. Guo, Y. Liu, C. Liu, J. Solid State Chem. 202, 305 (2013)CrossRefGoogle Scholar
  19. 19.
    A.R. Bueno, R.F.M. Oman, P.M. Jardim, N.A. Rey, R.R. Avillez, Microporous Mesoporous Mater. 185, 86 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Zhang, S. Wei, J. Lin, J. Luo, S. Liu, H. Song, E. Elawad, X. Ding, J. Gao, S. Qi, C. Tang, J. Phys. Chem. B 110, 21680 (2006)CrossRefGoogle Scholar
  21. 21.
    X. Wu, D. Wang, Z. Hu, G. Gu, Mater. Chem. Phys. 109, 560 (2008)CrossRefGoogle Scholar
  22. 22.
    X. Chen, S.W. Lee, Chem. Phys. Lett. 438, 279 (2007)CrossRefGoogle Scholar
  23. 23.
    S.C. Shen, W.K. Ng, Q. Chen, X. Zeng, R. Tan, Mater. Lett. 61, 4280 (2007)CrossRefGoogle Scholar
  24. 24.
    S. Ram, S. Rana, Mater. Lett. 42, 52 (2000)CrossRefGoogle Scholar
  25. 25.
    Y. Mathieu, B. Lebeau, V. Valtchev, Langmuir 23, 9435 (2007)CrossRefGoogle Scholar
  26. 26.
    X. Carrier, E. Marceau, J. Lambert, M. Chen, J. Colloid. Interface. Sci. 308, 429 (2007)CrossRefGoogle Scholar
  27. 27.
    A. Boumaza, A. Djelloul, F. Guerrab, Powder Technol. 201, 177 (2010)CrossRefGoogle Scholar
  28. 28.
    X. Gong, Z. Nie, M. Qian, J. Liu, L.A. Pederson, D.T. Hobbs, N.G. Mcduffie, Ind. Eng. Chem. Res. 42, 2163 (2003)CrossRefGoogle Scholar
  29. 29.
    T. Wang, S. Liu, Powder. Technol. 294, 280 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt LakesChinese Academy of SciencesXiningChina
  2. 2.Key Laboratory of Salt Lake Resources Chemistry of Qinghai ProvinceXiningChina
  3. 3.Shengnuo Optoelectronic Technology (QH) Co. Ltd.XiningChina

Personalised recommendations