A Novel In-Situ Synthesis and Enhanced Photocatalytic Performance of Z-Scheme Ag/AgI/AgBr/Sulfonated Polystyrene Heterostructure Photocatalyst

  • Bing Song
  • Qingjie Tang
  • Wenrong Wu
  • Huoli Zhang
  • Jianliang Cao
  • Mingjie Ma


Novel Z-scheme Ag/AgI/AgBr/sulfonated polystyrene composite is prepared via ion-exchange followed by light reduction. The photocatalytic activities of as-synthesized samples are evaluated through the degradation of methyl orange (RhB) under visible light irradiation. The Z-scheme Ag/AgI/AgBr/SPs photocatalysts display excellent photocatalytic activity and stability compared with Ag/AgI and Ag/AgBr. The improved photocatalytic activity is mainly due to the combined effects of the Z-scheme structure of Ag/AgI/AgBr/SPs and the strong surface plasmon resonance effect of Ag0 nanoparticles. Moreover, after four successive cycles, the Ag/AgI/AgBr/SPs photocatalysts have no obvious loss of activity for the degradation of RhB, illustrating that the Z-scheme Ag/AgI/AgBr/SPs photocatalysts are rather stable under visible-light irradiation.


Ag/AgI/AgBr Polymers Optical materials and properties Semiconductors 



This work was supported by the National Natural Science Foundation of China (51404097, 51504083), Program for Science & Technology Innovation Talents in Universities of Henan Province (17HASTIT029), China Postdoctoral Science Foundation funded project (2016M592290) and Foundation for Distinguished Young Scientists of Henan Polytechnic University (J2016-2).


  1. 1.
    J.S. Xie et al., Mater. Lett. 120, 54 (2014)CrossRefGoogle Scholar
  2. 2.
    J. He et al., Appl. Catal. B 203, 917 (2017)CrossRefGoogle Scholar
  3. 3.
    C. Wang, C. Xu, H. Zeng, S. Sun, Adv. Mater. 21, 3045 (2009)CrossRefGoogle Scholar
  4. 4.
    Y.W. Jun, J.S. Choi, J. Cheon, Chem. Commun. 12, 1203 (2007)CrossRefGoogle Scholar
  5. 5.
    C. Wang, W. Tian, Y. Ding, Y.Q. Ma, Z.L. Wang, N.M. Markovic, V.R. Stamenkovic, H. Daimon, S. Sun, J. Am. Chem. Soc. 132, 6524 (2010)CrossRefGoogle Scholar
  6. 6.
    C.H. Cui, H.H. Li, J.W. Yu, M.R. Gao, S.H. Yu, Angew. Chem. 122, 9335 (2010)CrossRefGoogle Scholar
  7. 7.
    L.S. Zhang, K.H. Wong, Z.G. Chen, J.C. Yu, J.C. Zhao, C. Hu, C.Y. Chan, P.K. Wong, Appl. Catal. A 363, 221 (2009)CrossRefGoogle Scholar
  8. 8.
    L.S. Zhang, K.H. Wong, H.Y. Yi, C. Hu, J.C. Yu, C.Y. Chan, P.K. Wong, Environ. Sci. Technol. 44, 1392 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 5, 782 (2006)CrossRefGoogle Scholar
  10. 10.
    S.H. Shen, L.J. Guo, X.B. Chen, F. Ren, C.X. Kronawitter, S.S. Mao, Int. J. Gre. Nanotechnol. 1, M94 (2010)Google Scholar
  11. 11.
    H.M. Zhu, B.F. Yang, J. Xu, Z.P. Fu, M.W. Wen, T. Guo, S.Q. Fu, J. Zuo, S.Y. Zhang, Appl. Catal. B 90, 463 (2009)CrossRefGoogle Scholar
  12. 12.
    Z.F. Liu, Z.G. Zhao, M. Miyauchi, J. Phys. Chem. C 113, 17132 (2009)CrossRefGoogle Scholar
  13. 13.
    Z.F. Liu, M. Miyauchi, Chem. Commun. 15, 2002 (2009)CrossRefGoogle Scholar
  14. 14.
    X.F. Wang, S.F. Li, Y.Q. Ma, H.G. Yu, J.G. Yu, J. Phys. Chem. C 115, 14648 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Sasaki, A. Iwase, H. Kato, A. Kudo, J. Catal. 259, 133 (2008)CrossRefGoogle Scholar
  16. 16.
    Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, J. Phys. Chem. C 113, 17536 (2009)CrossRefGoogle Scholar
  17. 17.
    K. Maeda, M. Higashi, D.L. Lu, R. Abe, K. Domen, J. Am. Chem. Soc. 132, 5858 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Naderi, J.A. Dale, G.M.B. Parkes et al., React. Funct. Polym. 1, 25 (2002)CrossRefGoogle Scholar
  19. 19.
    C.A. Toro, R. Rodrigo, J. Cuellar, React. Funct. Polym. 9, 1325 (2008)CrossRefGoogle Scholar
  20. 20.
    F.M.B. Coutinho, R.R. Souza, A.S. Gomes, Eur. Polym. J 7, 1525 (2004)CrossRefGoogle Scholar
  21. 21.
    H.G. Yu et al., Appl. Catal. B 144, 75 (2014)CrossRefGoogle Scholar
  22. 22.
    H.G. Yu et al., Appl. Catal. B 187, 163 (2016)CrossRefGoogle Scholar
  23. 23.
    H. Tang et al., Appl. Surf. Sci 391, 440 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Ahmed et al., Eur. Polym. J. 8, 1609 (2004)CrossRefGoogle Scholar
  25. 25.
    A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 3, 735 (1995)CrossRefGoogle Scholar
  26. 26.
    X. Zhang, L.Z. Zhang, T.F. Xie, D.J. Wang, J. Phys. Chem. C 113, 7371 (2009)CrossRefGoogle Scholar
  27. 27.
    L. Ye, J. Liu, C. Gong et al., ACS Catal. 2, 1677 (2012)CrossRefGoogle Scholar
  28. 28.
    Y.Y. Bai, F.R. Wang, J.K. Liu, Ind. Eng. Chem. Res. 37, 9873 (2016)CrossRefGoogle Scholar
  29. 29.
    Y.Y. Bai, Y. Lu, J.K. Liu, J. Hazard. Mater. 307, 26 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Bing Song
    • 1
  • Qingjie Tang
    • 1
  • Wenrong Wu
    • 1
  • Huoli Zhang
    • 1
  • Jianliang Cao
    • 1
  • Mingjie Ma
    • 1
  1. 1.College of Chemistry and Chemical EngineeringHenan Polytechnic UniversityJiaozuoChina

Personalised recommendations