A Facile Synthesis of Ferrocene Functionalized Graphene Oxide Nanocomposite for Electrochemical Sensing of Lead

  • Ashwin Karthick N. 
  • R. Thangappan
  • M. Arivanandhan
  • A. Gnanamani
  • R. Jayavel


Ferrocene, an organometallic compound has the potential to undergo reversible oxidation even at low potential which makes it suitable for electrochemical sensor applications. The potential of graphene oxide has been widely exploited in electrochemistry, since they serve as an excellent platform for electrochemical molecules and increase the electrochemical properties. The potential of Graphene oxide-ferrocene (GO-Fc) nanocomposites has not been realized much in fabrication of electrochemical sensors. Hence, the electrochemical properties of the pure Ferrocene and GO-Fc nanocomposites were investigated. Graphene oxide (GO) was synthesised by modified Hummer’s method and was conjugated with ferrocene at different weight ratio after thermal treatment. The as-prepared pure GO and GO-Fc nanocomposites were characterized by various analytical methods. Monoclinic phase of Ferrocene was observed in XRD. Surface functionalization of Ferrocene on GO was imaged by TEM. Ferrocene particles were observed to be rod shaped and functionalized on surface of GO in TEM images. The composite formation was validated by FTIR and Raman by the presence of aromatic ring and ferrocene bands respectively. AAS results showed 87% ferrocene loading capacity in GO-Fc composite 2 (GF2) which decreased to 77% in GO-Fc composite 5 (GF5). Based on the CV curves, and ferrocene loaded on GO, GO-Fc composite 4 (GF4) was chosen for evaluating the lead sensing property. The sensing studies showed a detection limit of 0.168 µg/l with significant sensitivity up to 250 µg/l. The results indicate that GO-Fc nanocomposites can be potentially used for sensing lead in environmental samples.


Graphene-oxide Ferrocene Nanocomposite Electrochemical sensor Lead 



The work was financially supported by DST-Nanomission under M.Tech Programme (SR/NM/PG-02/2015). The author (N.A) thank DST nanomission for M.Tech., student Fellowship (2015–2017). The authors are grateful to Prof.Y.M.Wang, NCTU, Taiwan for extending the TEM facility to analyze our samples.

Compliance with Ethical Standards

Conflict of interest

The authors have no conflict of interest.


  1. 1.
    S. Liakat, K.A. Bors, L. Xu, C.M. Woods, J. Doyle, C.F. Gmachl, Biomed. Opt. Express 5, 2397 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Hayat, G. Catanante, J.L. Marty, Sensors 14, 23439 (2014)CrossRefGoogle Scholar
  3. 3.
    J.T. Hyde, K. Hanson, A.K. Vannucci, A.M. Lapides, L. Alibabaei, M.R. Norris, T.J. Meyer, D.P. Harrison, ACS Appl. Mater. Interfaces 7, 9554 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Caballero, A. Espinosa, A. Tárraga, P. Molina, J. Org. Chem 73, 5489 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Alfonso, A. Tárraga, P. Molina, J. Org. Chem 76, 939 (2011)CrossRefGoogle Scholar
  6. 6.
    C.E. Banks, T.J. Davies, G.G. Wildgoose, R.G. Compton, Chem. Commun. 0, 829 (2005)CrossRefGoogle Scholar
  7. 7.
    M. Zhou, Y. Zhai, S. Dong, Anal. Chem 81, 5603 (2009)CrossRefGoogle Scholar
  8. 8.
    A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S. Acharya, K. Ariga, Bull. Chem. Soc. Jpn 90, 627 (2017)CrossRefGoogle Scholar
  9. 9.
    D. Chen, H. Feng, J. Li, Chem. Rev 112, 6027 (2012)CrossRefGoogle Scholar
  10. 10.
    C. Zhang, L. Li, J. Ju, W. Chen, Electrochim. Acta 210, 181 (2016)CrossRefGoogle Scholar
  11. 11.
    C. Cheng, S. Li, A. Thomas, N.A. Kotov, R. Haag, Chem. Rev 117, 1826 (2017)CrossRefGoogle Scholar
  12. 12.
    X. Li, J. Zhu, B. Wei, Chem. Soc. Rev 45, 3145 (2016)CrossRefGoogle Scholar
  13. 13.
    G. Yang, D. Bao, H. Liu, D. Zhang, N. Wang, H. Li, J. Inorg. Organomet. Polym. Mater 27, 1129 (2017)CrossRefGoogle Scholar
  14. 14.
    K. Deng, J. Zhou, X. Li, Electrochim. Acta 95, 18 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Liu, L. Wang, J. Deng, Q. Chen, Y. Li, Y. Zhang, H. Li, S. Yao, Analyst 137, 4577 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Tajik, M.A. Taher, H. Beitollahi, Sens. Actuators B Chem 197, 228 (2014)CrossRefGoogle Scholar
  17. 17.
    J.O. Nriagu, J.M. Pacyna, Nature 333, 134 (1988)CrossRefGoogle Scholar
  18. 18.
    O. US EPA, US EPA (2013)Google Scholar
  19. 19.
    B. IS 10500, Bur. Indian Stand. BIS New Delhi (2012)Google Scholar
  20. 20.
    B. IS 2490, Bur. Indian Stand. BIS New Delhi (1981)Google Scholar
  21. 21.
    B. IS 3306, Bur. Indian Stand. BIS New Delhi (1974)Google Scholar
  22. 22.
    G.-H. Hwang, W.-K. Han, J.-S. Park, S.-G. Kang, Sens. Actuators B Chem 135, 309 (2008)CrossRefGoogle Scholar
  23. 23.
    F.E. Salih, A. Ouarzane, M. El, Rhazi, Arab. J. Chem 10, 596 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, L. Li, C. Luo, X. Wang, H. Duan, Int. J. Biol. Macromol 86, 505 (2016)CrossRefGoogle Scholar
  25. 25.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  26. 26.
    R. Thangappan, S. Kalaiselvam, A. Elayaperumal, R. Jayavel, Solid State Ion 268, 321 (2014)CrossRefGoogle Scholar
  27. 27.
    G. Kalita, S. Sharma, K. Wakita, M. Umeno, Y. Hayashi, M. Tanemura, Phys. Chem. Chem. Phys. 15, 1271 (2012)CrossRefGoogle Scholar
  28. 28.
    N.F.Y. Tam, M.W.Y. Yao, Bull. Environ. Contam. Toxicol 62, 708 (1999)CrossRefGoogle Scholar
  29. 29.
    C.-C. Teng, C.-C.M. Ma, C.-H. Lu, S.-Y. Yang, S.-H. Lee, M.-C. Hsiao, M.-Y. Yen, K.-C. Chiou, T.-M. Lee, Carbon 49, 5107 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Wu, T. Shi, L. Zhang, High Perform. Polym 28, 453 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Bodenheimer, E. Loewenthal, W. Low, Chem. Phys. Lett. 3, 715 (1969)CrossRefGoogle Scholar
  32. 32.
    M. Khenfouch, M. Baïtoul, M. Maaza, Opt. Mater 36, 27 (2013)CrossRefGoogle Scholar
  33. 33.
    T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J.H. Lee, Carbon 50, 914 (2012)CrossRefGoogle Scholar
  34. 34.
    N. Sudesh, S. Kumar, C. Das, G.D. Bernhard, Varma, Supercond. Sci. Technol 26, 095008 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Coates, Encycl. Anal. Chem. (Wiley, New York, 2006)Google Scholar
  36. 36.
    J. Mbah, K. Moorer, L. Pacheco-Londoño, S. Hernandez-Rivera, G. Cruz, Electrochim. Acta 88, 832 (2013)CrossRefGoogle Scholar
  37. 37.
    W. Yantasee, Y. Lin, K. Hongsirikarn, G.E. Fryxell, R. Addleman, C. Timchalk, Environ. Health Perspect 115, 1683 (2007)CrossRefGoogle Scholar
  38. 38.
    S. Senthilkumar, R. Saraswathi, Sens. Actuators B Chem 141, 65 (2009)CrossRefGoogle Scholar
  39. 39.
    Z. Wang, Y. Qin, C. Wang, L. Sun, X. Lu, X. Lu, Appl. Surf. Sci. 258, 2017 (2012)CrossRefGoogle Scholar
  40. 40.
    H. Li, Q. Wei, J. He, T. Li, Y. Zhao, Y. Cai, B. Du, Z. Qian, M. Yang, Biosens. Bioelectron. 26, 3590 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Ashwin Karthick N. 
    • 1
  • R. Thangappan
    • 2
  • M. Arivanandhan
    • 1
  • A. Gnanamani
    • 3
  • R. Jayavel
    • 1
  1. 1.Centre for Nanoscience and TechnologyAnna University-AC Tech CampusChennaiIndia
  2. 2.Department of Energy StudiesPeriyar UniversitySalemIndia
  3. 3.Microbiology DivisionBiological Material Laboratory, CSIR-CLRIChennaiIndia

Personalised recommendations