A Novel Ship-in-Bottle Type Immobilized HRP via Co-adsorption of Super Paramagnets and HRP into Silica Hollow Fiber

  • Na Li
  • Hongxia Yin
  • Jicong Pei
  • Yan Huang
  • Guangtong Xu
  • Hongmin Yuan
  • Xiangnong Liu
  • Yuxiang Yang


In this paper, two type silica hollow fibers were synthesized through a soft template and hard template directing route respectively, and the super paramagnets was synthesized by thermal decomposition. The obtained silica hollow fiber and super paramagnets were characterized by XRD, N2 adsorption, SEM, TEM, EDS and XPS respectively. The ship-in-bottle type immobilized horseradish peroxidase (HRP) was assembled by co-adsorption of super paramagnets and HRP into the pore channel of silica hollow fiber in reverse microemulsion media. The effects of various parameters on enzyme activity of ship-in-bottle type immobilized HRP, including morphology, water content (ω0), super paramagnets concentration, HRP concentration, adsorption time, pH, crosslinking time and glutaraldehyde concentration were discussed in detailed. Moreover, the degradation performance of dichlorodiphenyltrichloroethane (DDT) by HRP immobilized on silica hollow fiber and spherical nano-silica was evaluated.

Graphical Abstract

The ship-in-bottle type immobilized HRP have been prepared by uniformly co-adsorption of super paramagnets and HRP into the pore channel of silica hollow fiber with high enzyme activity, as evidenced by HRTEM characterization, which can be employed to degrade DDT to low toxic organic compound with low molecular weight.


Silica hollow fiber Super paramagnets Immobilized horseradish peroxidase Ship-in-bottle 



This work was supported by the National Natural Science Foundation of China (20971043), State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC), the Open Project Program of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, and the Fundamental Research Funds for the Central Universities.


  1. 1.
    J.H. Jung, Y. Ono, S. Shinkai, Langmuir 16, 1643–1649 (2000)CrossRefGoogle Scholar
  2. 2.
    Y. Wu, G. Cheng, K. Katsov, Nat. Mater. 3, 816 (2004)CrossRefGoogle Scholar
  3. 3.
    Z. Liang, A.S. Susha, Chem. Eur. J. 10, 4910–4914 (2004)CrossRefGoogle Scholar
  4. 4.
    H.-P. Lin, C.-Y. Mou, Acc. Chem. Res. 35, 927–935 (2002)CrossRefGoogle Scholar
  5. 5.
    J.H. Jung, S.S.T. Shimizu, Chem. Mater. 15, 2141–2145 (2003)CrossRefGoogle Scholar
  6. 6.
    L. Wang, S. Tomura, F. Ohashi, J. Mater. Chem. 11, 1465–1468 (2001)CrossRefGoogle Scholar
  7. 7.
    F. Kleitz, F. Marlow, G.D. Stucky, Chem. Mater. 13, 3587–3595 (2001)CrossRefGoogle Scholar
  8. 8.
    C. Kazunga, M.D. Aitken, A. Gold, Environ. Sci. Technol. 33, 1408–1412 (1999)CrossRefGoogle Scholar
  9. 9.
    V.M. Samokyszyn, J.P. Freeman, Chem. Res. Toxicol 8(3), 349–355 (1995)CrossRefGoogle Scholar
  10. 10.
    P. Ye, J. Zhang, S. Chen, Y.X. Yang, W.J. Wang, Acta Scientiarum NaturaIium Universitatis Pekinensis 41(6), 918–925 (2005)Google Scholar
  11. 11.
    J. Lei, J. Fan, C. Yu, Microporous Mesoporous Mater. 73, 121–128 (2004)CrossRefGoogle Scholar
  12. 12.
    A. Dibenedetto, P. Stufano, W. Macyk, T. Baran, C. Fragale, ChemSusChem 5, (2012) 373–378CrossRefGoogle Scholar
  13. 13.
    J. Kim, J. Lee, H.B. Na, B.C. Kim, J.K. Youn, J.H. Kwak, Small 12(1), (2005) 1203–1207CrossRefGoogle Scholar
  14. 14.
    W. Stöber, A.F.E. Bohn, J. Colloid Interface Sci. 26, 62–69 (1968)CrossRefGoogle Scholar
  15. 15.
    Y. Wu, K.E. Taylor, N. Biswas, Enzyme Microb. Technol. 22, 315–322 (1998)CrossRefGoogle Scholar
  16. 16.
    K. Satsuma, M.M.K. Sato, Biosci. Biotechnol. Biochem. 77, 2222–2227 (2013)CrossRefGoogle Scholar
  17. 17.
    S.A. Bagshaw, E. Prouzet, T.J. Pinnavaia, Science 269, 1242 (1995)CrossRefGoogle Scholar
  18. 18.
    Z. guangqiang, X. yue, Chin. J. High Press. Phys. 23(1), 9–16 (2009)Google Scholar
  19. 19.
    Z. Yabin, L. Rui, G. Jiqiang, Rare Metal Mater. Eng. 37(S1), 721–724 (2008)Google Scholar
  20. 20.
    A.R. Zimmerman, J. Chorover, K.W. Goyne, Environ. Sci. Technol. 38, 4542–4548 (2004)CrossRefGoogle Scholar
  21. 21.
    F.H. Isgrove, R.J.H. Williams, G.W. Niven, Enzyme Microb. Technol. 28, 225–232 (2001)CrossRefGoogle Scholar
  22. 22.
    A. Sánchez-Ferrer, F. García-Carmona, Enzyme Microb. Technol. 16, 409–415 (1994)CrossRefGoogle Scholar
  23. 23.
    F. Ayhan, Y. İspirli Doğaç, H. Ayhan, Biol. Chem. 39, 241–251 (2011)Google Scholar
  24. 24.
    C. Topçular, H. Ayhan, Hacet. J. Biol. Chem. 36, 255–261 (2008)Google Scholar
  25. 25.
    Q. Xu, C. Mao, N.-N. Liu, Biosens. Bioelectron. 22, 768–773 (2006)CrossRefGoogle Scholar
  26. 26.
    Z.J.J. Gan, Prog. Chem. 17, 978–986 (2005)Google Scholar
  27. 27.
    M.I. Kim, J. Kim, J. Lee, Biotechnol. Bioeng. 96, 210–218 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Xia, Y. Yu, M. Tong, Chem. Bull. 8–13 (1998)Google Scholar
  29. 29.
    E.J.I. Willner, J. Phys. Chem. 98, 7628–7635 (1994)CrossRefGoogle Scholar
  30. 30.
    M.I. Kim, J. Kim, J. Lee, Biotechnol. Bioeng. 96, 210–218 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Chemistry and Molecular EngineeringEast China University of Science and TechologyShanghaiChina
  2. 2.State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)BeijingChina
  3. 3.State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchunChina
  4. 4.Analysis Test CenterYangzhou UniversityYangzhouChina

Personalised recommendations