Two New Nickel, Cobalt Coordination Polymers Based on Flexible 1,3-bis((1H-imidazolyl)-methyl)benzene Ligand: Syntheses, Structures and Magnetic Properties

  • Xiaofei Xue
  • Yuqi Liu
  • Yubo Xing
  • Xinying Wang
  • Wei Li


Two new coordination polymers, namely, [Ni(HIP)(m-bix)(H2O)]n (1), {[Co2(oba)2(m-bix)2]·H2O}n (2) (m-bix = 1,3-bis(1H-imidazolyl)-methyl)benzene, H2HIP = 5-hydroxyisophthalic acid, oba = 4,4-oxybisbenzoic acid), were synthesized under hydrothermal conditions by reactions of transition metal salts of Ni(OAc)2 and Co(OAc)2 with the N-heterocyclic m-bix. There structures were characterized by techniques of single-crystal X-ray diffraction analysis, elemental analysis, infrared spectra (IR) and thermogravimetric analysis (TGA). Complex 1 and 2 both exhibit a 2D 4-connected sql network with the topology symbol of (44·62) and are further extending into a 3D architecture via O–H⋅⋅⋅O hydrogen bonds. Moreover, the solid state magnetic properties of complex 1 and 2 have been investigated.

Graphical Abstract


Synthesis Structure Topology Magnetic property 



This work was financially supported by the Scientific Research Foundation for the Introduced Talents of Kunming University of Science and Technology (No. KKSY201507026), the Analysis Testing Fund of Kunming University of Science and Technology (No. 2017T20040109, No. 2017M20152111048), the Joint Fund of National Natural Science Foundation of China and Yunnan (Grant No. U1502273), and the State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093 (Grant No. CNMRCUKF1606).

Supplementary material

10904_2017_742_MOESM1_ESM.cif (205 kb)
Appendix A. Supplementary material CCDC 1564090 and 1564092 contain the supplementary crystallographic data for complexes 1 and 2. The data can be obtained free of charge via /cif. (CIF 205 KB)
10904_2017_742_MOESM2_ESM.cif (35 kb)
Supplementary material 2 (CIF 35 KB)


  1. 1.
    W.X. Li, H.X. Li, H.Y. Li, M.M. Chen, Y.X. Shi, J.P. Lang, Cryst. Growth Des. 17, 3948 (2017)CrossRefGoogle Scholar
  2. 2.
    X. Feng, Y.Q. Feng, N. Guo, Y.L. Sun, T. Zhang, L.F. Ma, L.Y. Wang, Inorg. Chem. 56, 1713 (2017)CrossRefGoogle Scholar
  3. 3.
    T. Tahier, C.L. Oliver, Cryst. Eng. Commun. 19, 3607 (2017)CrossRefGoogle Scholar
  4. 4.
    D.M. Chen, N.N. Zhang, C.S. Liu, Z.H. Jiang, X.D. Wang, M. Du, Inorg. Chem. 56, 2379 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Adil, Y. Belmabkhout, R.S. Pillai, A. Cadiau, P.M. Bhatt, A.H. Assen, G. Maurinb, M. Eddaoudi, Chem. Soc. Rev. 46, 3402 (2017)CrossRefGoogle Scholar
  6. 6.
    S.B. Zhou, X.F. Wang, C.C. Du, D.Z. Wang, D.Z. Jia, Cryst Eng Commun. 19, 3124 (2017)CrossRefGoogle Scholar
  7. 7.
    G. Xiong, B. Yu, J. Dong, Y. Shi, B. Zhao, L.N. He, Chem. Commun. 53, 6013 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Zhu, X.Q. Liu, H.L. Jiang, L.B. Sun, Chem. Rev. 117, 8129 (2017)CrossRefGoogle Scholar
  9. 9.
    D. Xie, X. Liu, B. Ling, B. Zheng, Z.X. Pi, H. Chen, W.J. Zhu, Y. Xue, J.H. Bi, H.Z. Dong, J. Inorg. Organomet. Polym. 27, 658 (2017)CrossRefGoogle Scholar
  10. 10.
    J.P. Li, B.J. Li, M.T. Pan, B. Liu, J.J. Cheng, R.Y. Li, X.L. Gao, S.M. Wang, H.W. Hou, Z.Y. Liu, Cryst. Growth Des. 17, 2975 (2017)CrossRefGoogle Scholar
  11. 11.
    A.K. Bar, C. Pichon, J.P. Sutter, Coord, Chem. Rev. 308, 346 (2016)CrossRefGoogle Scholar
  12. 12.
    I. Castro, W.P. Barros, M.L. Calatayud, F. Lloret, N. Marino, G.D. Munno, H.O. Stumpf, R.R. García, M.J. Coord, Chem. Rev. 315, 135 (2016)Google Scholar
  13. 13.
    H.Y. Dai, C.J. Wang, Y.Y. Tang, Y. Tong, K.L. Mao, Z.B. Zhang, X.L. Zhou, J. Inorg. Organomet. Polym. 27, 80 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Keskin, S. Kızılel, Ind. Eng. Chem. Res. 50, 1799 (2011)CrossRefGoogle Scholar
  15. 15.
    X.S. Zeng, Y. Chen, X.F. Deng, X. Li, H.L. Xu, Q. Yang, G.B. Hua, H.J. Qiu, D.R. Xiao, Inorg. Chem. Commun. 72, 65 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Wang, J.J. Guo, X.L. Xu, P.F. Yao, Y.M. Jiang, Transit. Met. Chem. 42, 293 (2017)CrossRefGoogle Scholar
  17. 17.
    X.H. Zhou, Q.Q. Chen, B.L. Liu, L. Li, T. Yang, W. Huang, Dalton Trans. 46, 430 (2017)CrossRefGoogle Scholar
  18. 18.
    X.F. Wang, C.C. Du, S.B. Zhou, D.Z. Wang, J. Mol. Struct. 1128, 103 (2017)CrossRefGoogle Scholar
  19. 19.
    H.Y. Li, L.H. Cao, Y.L. Wei, H. Xu, S.Q. Zang, Cryst .Eng. Commun. 17, 6297 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Zhou, Y.S. Xue, Y. Xu, J. Zhang, H.B. Du, Cryst. Eng. Commun. 15, 7315 (2013)CrossRefGoogle Scholar
  21. 21.
    T.T. Fan, J.J. Li, X.L. Qu, H.L. Han, X. Li, Cryst. Eng. Commun. 17, 9443 (2015)CrossRefGoogle Scholar
  22. 22.
    C.M. Nagaraja, B. Ugale, A. Chanthapally, Cryst. Eng. Commun. 16, 4805 (2014)CrossRefGoogle Scholar
  23. 23.
    W. Wang, W.Q. Kan, J. Yang, J.F. Ma, Cryst. Eng. Commun. 15, 3824 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Tripathi, S.K. Sachan, G. Anantharaman, Polyhedron 119, 55 (2016)CrossRefGoogle Scholar
  25. 25.
    Z.Q. Shi, Y.Z. Li, Z.J. Guo, H.G. Zheng, Cryst. Growth Des. 13, 3078 (2013)CrossRefGoogle Scholar
  26. 26.
    X.M. Guo, Y.N. Yan, H.D. Guo, Y.J. Qi, C.M. Liu, Cryst. Eng. Commun. 18, 2546 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Liang, W.G. Yuan, S.F. Zhang, Z. He, J.R. Xue, X. Zhang, L.H. Jing, D.B. Qin, Dalton Trans. 45, 1382 (2016)CrossRefGoogle Scholar
  28. 28.
    P.K. Yadav, N. Kumari, P. Pachfule, R. Banerjee, L. Mishra, Cryst. Growth Des. 12, 5311 (2012)CrossRefGoogle Scholar
  29. 29.
    W. Wang, Z.Y. Xiao, H. Lin, R.M. Wang, L.L. Zhang, D.F. Sun, RSC Adv. 6, 16575 (2016)CrossRefGoogle Scholar
  30. 30.
    Z.G. Gu, Y.T. Liu, X.J. Hong, Q.G. Zhan, Z.P. Zheng, S.R. Zheng, W.S. Li, S.J. Hu, Y.P. Cai, Cryst. Growth Des. 12, 2178 (2012)CrossRefGoogle Scholar
  31. 31.
    J.T. Li, J. Li, L.M. Song, X.H. Ji, Inorg. Chem. Commun. 83, 88 (2017)CrossRefGoogle Scholar
  32. 32.
    D.J. Qiang, X.G. Yang, X.B. Deng, H.L. Sun, CrystEngComm 18, 8159 (2016)CrossRefGoogle Scholar
  33. 33.
    C.L. Zhang, L. Qin, Z.Z. Shi, H.G. Zheng, Dalton Trans. 44, 4238 (2015)CrossRefGoogle Scholar
  34. 34.
    N.N. Huang, X.D. Wang, Y.H. Yu, J.S. Gao, G.F. Hou, Chin. J. Struct. Chem. 34, 292 (2015)Google Scholar
  35. 35.
    C.M. Liu, S. Gao, H.M. Hu, X. Jin, H.Z. Kou, Dalton Trans. 598 (2002)Google Scholar
  36. 36.
    L. Zhang, L. Liu, C. Huang, X. Han, L. Guo, H. Xu, H. Hou, Y. Fan, Cryst. Growth Des. 15, 3426 (2015)CrossRefGoogle Scholar
  37. 37.
    X.L. Wang, F.F. Sui, H.Y. Lin, J.W. Zhang, G.C. Liu, Cryst. Growth Des. 14, 3438 (2014)CrossRefGoogle Scholar
  38. 38.
    C.I. Yang, P.H. Chuang, G.H. Lee, S.M. Peng, K.L. Lu, Inorg. Chem. 51, 757 (2012)CrossRefGoogle Scholar
  39. 39.
    K.C. Mondal, G.E. Kostakis, Y. Lan, C.E. Anson, A.K. Powell, Inorg. Chem. 48, 9205 (2009)CrossRefGoogle Scholar
  40. 40.
    X.Y. Wang, S.C. Sevov, Inorg. Chem. 47, 1037 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of ScienceKunming University of Science and TechnologyKunmingChina

Personalised recommendations