Advertisement

Newly MOF-Graphene Hybrid Nanoadsorbent for Removal of Ni(II) from Aqueous Phase

  • Mohammad Rabiee Faradonbeh
  • Ali A. Dadkhah
  • Alimorad Rashidi
  • Saeideh Tasharofi
  • Firozeh Mansourkhani
Article

Abstract

Cu(tpa)·(DMF) (Cu terephthalic acid Dimethyl formamide) MOF-5 and its hybrids have been successfully synthesized by hydrothermal method and have been used as a nano adsorbent for heavy metal removal from waste water. The present work focuses on the transient adsorption of Ni(II) by Cu(tpa)·(DMF)MOF-5 and its hybrid with different graphene concentrations. MOF-5 was synthesized by terephthalate ligand and copper cores. Adsorption experiments were accomplished in initial concentration of Ni(II) 300 ppm and 100 ml volume of solution, 25 mg of adsorbent and Room temperature. The XRD analysis of synthesized nano adsorbent (MOF-5 and all other hybrids) are compared to analyze the main factors and features. The results of scanning electron microscopy (SEM) of MOF-5 and MOF-5–Graphene hybrid 30% show that graphene layers behave as dividers and place between platelets of MOF-5Cu. Removal percentage of Ni(II) by various adsorbents, MOF-5Cu, 10% hybrid of MOF-5Cu–Graphene, 20% hybrid, 30% hybrid, 40% hybrid are approximately, 85, 86, 90, 96, 94%, respectively. Also, pseudo first and second order kinetic models studied to obtain the adsorption treatment of MOF-5Cu–Graphene hybrid 30% and it is found that the pseudo second order kinetic model is more reasonable for this adsorbent. Our results indicate that MOF-5Cu and its hybrid with graphene have great potential in removing Ni(II) ions from aqueous environment.

Keywords

Graphene MOF-5 Hybrid Heavy metal Ni(II) 

Notes

Acknowledgements

This research has been supported by the R&T/NIOC under contract number 71/92019, Graduate office of Isfahan University of Technology and Iran Nanotechnology Initiative Council. Our thanks and appreciation also go to the people who are directly or indirectly helped us out in developing this work.

References

  1. 1.
    N.A. Khan, Z. Hasan, S.H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks review article. J. Hazard Mater. 244–245, 444–456 (2012)Google Scholar
  2. 2.
    J.L.C. Rowsell, O.M. Yaghi, Metal–organic frameworks: a new class of porous materials review article. Micropor. Mesopor. Mat. 73, 3–14 (2004)CrossRefGoogle Scholar
  3. 3.
    M.J. Rosseinsky, Recent developments in metal–organic framework chemistry: design, discovery, permanent porosity and flexibility review article. Micropor. Mesopor. Mat. 73, 15–30 (2004)CrossRefGoogle Scholar
  4. 4.
    J.R. Li, J. Sculley, H.C. Zhou, Metal organic frameworks for separations. Chem. Rev. 112, 869–932 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Wu, Q. Gong, D.H. Olson, J. Li, Commensurate adsorption of hydrocarbons and alcohols in micro porous metal organic frameworks. Chem. Rev. 112, 836–868 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Kurmoo, Magnetic metal-organic frameworks. Chem. Soc. Rev. 38, 1353–1379 (2009)CrossRefGoogle Scholar
  7. 7.
    J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009)CrossRefGoogle Scholar
  8. 8.
    B.J. Zhu, X.Y. Yu, Y. Jia, F.M. Peng, B. Sun, M.Y. Zhang, T. Luo, J.H. Liu, X.J. Huang, Iron 1,3,5-benzenetricarboxylic metal organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. J. Phys. Chem. US 116, 8601–8607 (2012)Google Scholar
  9. 9.
    F. Ke, L.G. Qiu, Y.P. Yuan, F.M. Peng, X. Jiang, A.J. Xie, Y.H. Shen, J.F. Zhu, Thiol-functionalization of metal-organic framework by a facile coordination based postsynthetic strategy and enhanced removal of Hg2+ from water. J. Hazard Mater. 196, 36–43 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)CrossRefGoogle Scholar
  11. 11.
    D. Britt, D. Tranchemontagne, O.M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA 105, 11623–11627 (2008)CrossRefGoogle Scholar
  12. 12.
    B. Chen, S. Ma, E.J. Hurtado, E.B. Lobkovsky, C. Liang, H. Zhu, S. Dai, Selective gas sorption within a dynamic metal-organic framework. Inorg. Chem. 46, 8705–8709 (2007)CrossRefGoogle Scholar
  13. 13.
    D.Y. Siberio-Perez, A.G. Wong-Foy, O.M. Yaghi, A.J. Matzger, Raman spectroscopic investigation of CH4 and N2 Adsorption in metal-organic frameworks. Chem. Mater. 19, 3681–3685 (2007)CrossRefGoogle Scholar
  14. 14.
    L. Mi, H. Hou, Z. Song, H. Han, Y. Fan, Polymeric zinc ferrocenyl sulfonate as a molecular aspirator for the removal of toxic metal ions. Chem. Eur. J. 14, 1814–1821 (2008)CrossRefGoogle Scholar
  15. 15.
    L. Mi, H. Hou, Z. Song, H. Han, H. Xu, Y. Fan, S.W. Ng, Rational construction of porous polymeric cadmium ferrocene 1,1 disulfonates for transition metal ion exchange and sorption. Cryst. Growth Des. 7, 2553–2561 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Das, H. Kim, K. Kim, Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. J. Am. Chem. Soc. 131, 3814–3815 (2009)CrossRefGoogle Scholar
  17. 17.
    T.K. Prasad, D.H. Hong, M.P. Suh, High gas sorption and metal-ion exchange of micro porous metal–organic frameworks with incorporated imide groups. Chem. Eur. J. 16, 14043–14050 (2010)CrossRefGoogle Scholar
  18. 18.
    J.P. Ruparelia, S.P. Duttagupta, A.K. Chatterjee, S. Mukherji, Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232, 145–156 (2008)CrossRefGoogle Scholar
  19. 19.
    G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep. Purif. Technol. 58, 224–231 (2007)CrossRefGoogle Scholar
  20. 20.
    A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58, 49–52 (2007)CrossRefGoogle Scholar
  21. 21.
    B. Tawabini, S. Al-Khaldi, M. Atieh, M. Khaled, Removal of mercury from water by multi-walled carbon nanotubes. Water Sci. Technol. 61, 591–598 (2010)CrossRefGoogle Scholar
  22. 22.
    K. Pyrzynska, M. Bystrzejewski, Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloid Surf. A 362, 102–109 (2010)CrossRefGoogle Scholar
  23. 23.
    K. Pyrzynska, Sorption of Cd(II) onto carbon-based materials a comparative study. Microchim. Acta 169, 7–13 (2010)CrossRefGoogle Scholar
  24. 24.
    K. Kadirvelu, C. Faur-Brasquet, P.L. Cloirec, Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. Langmuir 16, 8404–8409 (2000)CrossRefGoogle Scholar
  25. 25.
    J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of Lead(II) from aqueous solution by adsorption on carbon aerogel using a response surface methodological approach. Ind. Eng. Chem. Res. 44, 1987–1994 (2005)CrossRefGoogle Scholar
  26. 26.
    K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.-S. Lee, D. Sohn, Y. Lee, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scripta Mater. 58, 1010–1013 (2008)CrossRefGoogle Scholar
  27. 27.
    K.R. Reddy, K.-P. Lee, A.L. Gopalan, M.S. kim, A.M. Shokat, Y.C. Nho, Synthesise of metal (Fe or Pd)/alloy (Fe-Pd)-nanoparticle-embedded multiwall carbon nano tube/sulfonated polyaniline composite by Y irradiation. J. Polym. Sci. Part A: Polym. Chem. 44, 3355–3364 (2006)CrossRefGoogle Scholar
  28. 28.
    M. Hassan, K.R. Reddy, E. Haque, A.I. Minett, V.G. Gomes, High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J. Colloid Interface Sci. 410, 43–51 (2013)CrossRefGoogle Scholar
  29. 29.
    K.R. Reddy, B.C. Sin, K.S. Ryu, J. Noh, Y. Lee, In situ self-organization of carbon black-polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth. Metal 159, 1934–1939 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Edge-enriched graphene quantum dots for enhance photo-luminescence and super capacitance. Nanoscale 6, 11988–11994 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRefGoogle Scholar
  32. 32.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.B.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  34. 34.
    H. Jabeen, K.C. Kemp, V. Chandra, Synthesis of nano zerovalent iron nanoparticles Graphene composite for the treatment of lead contaminated water. J. Environ. Manage. 130, 429–435 (2013)CrossRefGoogle Scholar
  35. 35.
    Y. Ren, N. Yan, Q. Wen, Z. Fan, T. Wei, M. Zhang, Graphene/MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem. Eng. J. 175, 1–7 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Varma, D. Sarode, S. Wakale, B.A. Bhanvase, M.P. Deosarkar, Removal of nickel from waste water using graphene nanocomposite. Int. J. Chem. Phys. Sci. 2, 132–139 (2013)Google Scholar
  37. 37.
    D. Nandi, I. Saha, S.S. Ray, A. Maity, Development of a reduced-graphene-oxide based superparamagnetic nanocomposite for the removal of nickel(II) from an aqueous medium via a fluorescence sensor platform. J. Colloid Interface Sci. 454, 69–79 (2015)CrossRefGoogle Scholar
  38. 38.
    D. Nandi, K. Gupta, A.K. Ghosh, A. De, S. Banerjee, U.C. Ghosh, Manganese-incorporated iron(III) oxide-graphene magnetic nanocomposite: synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution. J. Nanopart. Res. 14, 1272 (2012)CrossRefGoogle Scholar
  39. 39.
    J. Zhu, R. Sadu, S. Wei, D.H. Chen, N. Haldolaarachchige, Z. Luo, J.A. Gomes, D.P. Young, Z. Guoa, Magnetic graphene nanoplatelet composites toward Arsenic removal. Ecs J. Solid State Sci. Technol. 1(1), M1–M5 (2012)CrossRefGoogle Scholar
  40. 40.
    S. Venkateswarlu, D. Lee, M. Yoon, Bioinspired 2D-carbon flakes and Fe3O4 nanoparticles composite for arsenite removal. ACS Appl. Mater. Interfaces 8(36), 23876–23885 (2016)CrossRefGoogle Scholar
  41. 41.
    L. Li, L. Fan, M. Sun, H. Qiu, X. Li, H. Duan, C. Luo, Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Colloid Surface B 107, 76–83 (2013)CrossRefGoogle Scholar
  42. 42.
    W. Wu, Y. Yang, H. Zhou, T. Ye, Z. Huang, R. Liu, Y. Kuang, Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pollut. 224, 1372–1380 (2013)CrossRefGoogle Scholar
  43. 43.
    C. Petit, T.J. Bandosz, MOF–graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv. Mater 21, 4753–4757 (2009)CrossRefGoogle Scholar
  44. 44.
    N.N. Sheno, A. Morsali, Synthesis of different copper oxide nano-structures from direct thermal decomposition of porous Copper(II) metal-organic framework precursors. Int. J. Nanosci. Nanotechnol. 8, 2 (2012)Google Scholar
  45. 45.
    S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 129, 14176–14177 (2007)CrossRefGoogle Scholar
  46. 46.
    J. Hafizovic, M. Bjørgen, U. Olsbye, P.D.C Dietzel, S. Bordiga, C. Prestipino, C. Lamberti, K.P. Lillerud, The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J. Am. Chem. Soc. 129(12), 3612–3620 (2007)CrossRefGoogle Scholar
  47. 47.
    C.G. Carson, K. Hardcastle, J. Schwartz, X. Liu, C. Hoffmann, R.A. Gerhardt, R. Tannenbaum, Synthesis and structure characterization of copper terephthalate, metal–organic frameworks. Eur. J. Inorg. Chem. 2338–2343 (2009)Google Scholar
  48. 48.
    I. Langmuir, The constitution and fundamental properties of solids and liquids. Part. I. solids. J. Am. Chem. Soc. 38(11), 2221–2295 (1916)CrossRefGoogle Scholar
  49. 49.
    Y. Li, P. Zhang, Q. Du, X. Peng, T. Liu, Z. Wang, Y. Xia, W. Zhang, K. Wang, H. Zhu, D. Wu, Adsorption of fluoride from aqueous solution by graphene. J. Colloid Interface Sci. 363, 348–354 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Mohammad Rabiee Faradonbeh
    • 1
  • Ali A. Dadkhah
    • 1
  • Alimorad Rashidi
    • 2
  • Saeideh Tasharofi
    • 3
  • Firozeh Mansourkhani
    • 4
  1. 1.Department of Chemical EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Nanotechnology Research CenterResearch Institute of Petroleum Industry (RIPI)TehranIran
  3. 3.Research Group of Ecology and Environmental PollutionResearch Institute of Petroleum Industry (RIPI)TehranIran
  4. 4.School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations