Advertisement

Synthesis and Characterization of Novel Heat Resistant, Superparamagnetic Poly(ether-imide) Nanocomposites Containing Xanthene: Representing a Strategy for Improving Thermal Stability of Magnetic Polymer-Based Nanocomposites

  • Akbar Mobinikhaledi
  • Hassan Moghanian
  • Parvin Safari
  • Elnaz Firuzian
Article

Abstract

Two superparamagnetic and heat resistant xanthene based poly(ether-imide) nanocomposites were successfully synthesized. Field emission scanning electron microscopy, transmission electron microscope, X-ray diffraction, thermal gravimetric analysis, vibrating sample magnetometer, Energy-dispersive X-ray spectroscopy and Fourier-transform infrared (FTIR) techniques were used for studying the morphology, crystalline phase, thermal stability and magnetization properties of the nanocomposites. The neat form of the corresponding poly(ether-imide) was also prepared by thermal imidization method and its structure was confirmed by FTIR, proton nuclear magnetic resonance (1H NMR), UV–Vis and photoluminescence (PL) spectroscopies. In order to investigate the effects of modifying the surface of Fe3O4 nanoparticles on thermal properties of the nanocomposites, the surface of Fe3O4 nanoparticles was coated with SiO2 and polysuccinimide (PSI), sequentially. Then, both the unmodified Fe3O4 and surface-modified Fe3O4 (Fe3O4@SiO2–PSI) nanoparticles were used as fillers for the polymer matrix. According to the results, the prepared nanocomposites were superparamagnetic and showed higher thermal stability in comparison to the neat poly(ether-imide). Furthermore, poly(ether-imide)/Fe3O4@SiO2–PSI (PIEN 10b) nanocomposite showed higher thermal stability and dispersed better in the polymer matrix [in comparison to poly(ether-imide)/Fe3O4 (PIEN 10 a)] due to the presence of imide groups and high hydroxyl content of the functional Fe3O4 nanoparticles which caused high interactions between poly(ether-imide) and functional Fe3O4. Furthermore, the presence of methyl, ether and bulky xanthene groups in the poly(ether-imide(backbone improved the solubility of the neat polymer in organic solvents. These properties can be very helpful for extending new applications of poly(ether-imide)s.

Keywords

Heat resistant nanocomposites Xanthene Poly(ether-imide) Superparamagnetism Fe3O4 nanoparticles 

Notes

Acknowledgements

We gratefully acknowledge financial support from the Research Council of Arak University.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    X. Wan, Y. Zhan, Z. Long, G. Zeng, Y. Ren, Y. He, Appl. Surf. Sci. 425, 905 (2017)CrossRefGoogle Scholar
  2. 2.
    H. Moghanian, A. Mobinikhaledi, Z. Baharangiz, J. Polym. Res. 21, 513 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Kavas, M. Gunay, A. Baykal, M.S. Toprak, H. Sozeri, B. Aktas, J. Inorg. Organomet. Polym. Mater. 23, 306 (2013)CrossRefGoogle Scholar
  4. 4.
    H.M.Z.H. El Ghandoor, M.M.H. Khalil, M.I.M. Ismail, Int. J. Electrochem. Sci. 7, 5734 (2012)Google Scholar
  5. 5.
    A. Ito, Y. Kuga, H. Honda, H. Kikkawa, A. Horiuchi, Y. Watanabe, T. Kobayashi, Cancer Lett. 212, 167 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Komarneni, W. Hu, Y.D. Noh, A. Van Orden, S. Feng, C. Wei, H. Pang, F. Gao, Q. Lu, H. Katsuki, Ceram. Int. 38, 2563 (2012)CrossRefGoogle Scholar
  7. 7.
    S.K. Ramasahayam, G. Gunawan, C. Finlay, T. Viswanathan, Water Air Soil Pollut. 223, 4853 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. Zhou, S. Wang, B. Ding, Z. Yang, Chem. Eng. J. 138, 578 (2008)CrossRefGoogle Scholar
  9. 9.
    D. Ding, X. Yan, X. Zhang, Q. He, B. Qiu, D. Jiang, H. Wei, J. Guo, A. Umar, L. Sun, Q. Wang, M.A. Khan, D.P. Young, X. Zhang, B. Weeks, T.C. Ho, Z. Guo, S. Wei, Superlattices Microstruct. 85, 305 (2015)CrossRefGoogle Scholar
  10. 10.
    G.R. Ferreira, T. Segura, F.G.S. Júnior, A.P. Umpierre, F. Machado, Eur. Polym. J. 48(12), 2050 (2012)CrossRefGoogle Scholar
  11. 11.
    J.S. Neves, J.F.G. de Souza, P.A.Z. Suarez, A.P. Umpierre, F. Machado, Macromol. Mater. Eng. 296(12), 1107 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Ashjari, A.R. Mahdavian, N. Golshan Ebrahimi, Y. Mosleh, J. Inorg. Organomet. Polym. Mater. 20, 213 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Yang, X. Jiang, J. Chao, C. Song, B. Liu, D. Zhu, Y. Sun, B. Yang, Q. Zhang, Y. Chen, L. Wang, Sci. China Mater. (2017). doi: 10.1007/s40843-017-9022-1 Google Scholar
  14. 14.
    X. Peng, W. Zhang, L. Gai, H. Jiang, Y. Tian, Russ. J. Phys. Chem. A 90(8), 1656 (2016)CrossRefGoogle Scholar
  15. 15.
    Y. Lu, Y. Yin, B.T. Mayers, Y. Xia, Nano Lett. 2, 183 (2002)CrossRefGoogle Scholar
  16. 16.
    L. Yi, C. Li, W. Huang, D. Yan, Polymer 80, 67 (2015)CrossRefGoogle Scholar
  17. 17.
    D. Wilson, H.D. Stenzenberger, P.M. Hergenrother, Polyimides (Chapman and Hall, New York, 1990), p. 58CrossRefGoogle Scholar
  18. 18.
    M.K. Ghosh, K.L. Mittal, Polyimides Fundamentals and Applications (Marcel Decker, New York, 1996), p. 7Google Scholar
  19. 19.
    A.M. Díez-Pascual, M. Naffakh, C. Marco, G. Ellis, M.A. Gómez-Fatou, Prog. Mater. Sci. 57, 1106 (2012)CrossRefGoogle Scholar
  20. 20.
    T.J. Fai, J.E. Mark, P.N. Prasad, Polymers and Other Advanced Materials Emerging Technologies and Business Opportunities. (Springer, New York, 1996)Google Scholar
  21. 21.
    K. Faghihi, H. Moghanian, Polym. Bull. 65(4), 319 (2010)CrossRefGoogle Scholar
  22. 22.
    H.L. Tyan, K.H. Wei, T.E. Hsieh, J. Polym. Sci. B 38, 2873 (2000)CrossRefGoogle Scholar
  23. 23.
    C.M. Leu, Y.T. Chang, K.H. Wei, Macromolecules 36, 9122 (2003)CrossRefGoogle Scholar
  24. 24.
    M.A. Saeed, Z. Akhter, M. Saif Ullah Khan, N. Iqbal, M.S. Butt, Polym. Degrad. Stab 93, 1762 (2008)CrossRefGoogle Scholar
  25. 25.
    X. Zhao, Y.F. Li, S.J. Zhang, Y. Shao, X.L. Wang, Polymer 48, 5241 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Shabanian, H. Moghanian, M. Khaleghi, M. Hajibeygi, H.A. Khonakdar, H. Vahabi, RSC Adv. 6, 112568 (2016)CrossRefGoogle Scholar
  27. 27.
    K. Can, M. Ozmen, M. Ersoz, Colloids Surf. B 71, 154 (2009)CrossRefGoogle Scholar
  28. 28.
    W. StÓ§ber, A. Fink, E.J. Bohn, J. Colloid Interface Sci. 26, 62 (1968)CrossRefGoogle Scholar
  29. 29.
    G. Feng, D. Hu, L. Yang, Y. Cui, X. Cui, H. Li, Sep. Purif. Technol. 74, 253 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Shabanian, Z. Mirzakhanian, H. Moghanian, M. Hajibeygi, H. Salimi, H.A. Khonakdar, J. Therm. Anal. Calorim. 129(1), 147 (2017)CrossRefGoogle Scholar
  31. 31.
    A.H. Lu, E.L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46, 1222 (2007)CrossRefGoogle Scholar
  32. 32.
    D.W. Van Krevelen, P.J. Hoftyzer, Properties of Polymers, Their Estimation and Correlation with Chemical Structure, 3th edn. (Elsevier Scientific Publishing, New York, 1976)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Akbar Mobinikhaledi
    • 1
  • Hassan Moghanian
    • 2
  • Parvin Safari
    • 1
  • Elnaz Firuzian
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceArak UniversityArakIran
  2. 2.Department of Chemistry, Dezful BranchIslamic Azad UniversityDezfulIran

Personalised recommendations