Synthesis of Nanostructured Based WO3 Materials for Photocatalytic Applications

  • M. B. Tahir
  • Ghulam Nabi
  • N. R. Khalid
  • W. S. Khan


In this article, a variety of well defined, highly symmetrical, and nanostructures of WO3 based materials were successfully synthesized through facile hydrothermal method at different reaction time 12, 18, 24, 30, and 36 h respectively. The as synthesized samples were characterized using SEM, EDX, XRD, BET, UV–Vis, and PL to investigate the morphology, purity and elemental composition of material, structural properties, surface area and optical properties respectively. SEM reveals that morphology of nanostructured materials have been significantly affected by varying the hydrothermal duration. XRD peaks show the monoclinic and hexagonal phase for a different reaction time, whereas EDX confirmed the purity of material. UV–Vis and PL confirmed the band edge position and high degradation rate. The as-prepared nanostructures also showed a very high specific surface area and proved an exceptional ability to eliminate organic pollutants. Experimental results showed that the efficient photocatalytic activity of methylene blue can be attributed to the carefully controlled hierarchical WO3 structures by modulating the surface morphology confirmed by PL and photocatalytic activity test as well.


WO3 Morphology Nanocrystalline materials Photocatalytic activity 


  1. 1.
    W. Mu, X. Xie, X. Li, R. Zhang, Q. Yu, K. Lv, H. Wei, Y. Jian, RSC Adv. 4, 36064–36070 (2014)CrossRefGoogle Scholar
  2. 2.
    F. Yan, X. Wang, J. Inorg. Organomet. Polym. Mater. 3, 1–8 (2016)Google Scholar
  3. 3.
    M. Honda, T. Goto, T. Owashi, A.G. Rozhin, S. Yamaguchi, T. Ito, S.A. Kulinich, Phys. Chem. Chem. Phys. 18, 23628–23637 (2016)CrossRefGoogle Scholar
  4. 4.
    K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.S. Lee, D. Sohn, Y. Lee, Scr. Mater. 58, 1010–1013 (2008)CrossRefGoogle Scholar
  5. 5.
    K.R. Reddy, K.P. Lee, A.G. Iyengar, J. Appl. Polym. Sci. 104, 4127–4134 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Ali, Z.Y. Ping, K.M. Seok, K.R. Reddy, Bull. Korean Chem. Soc. 28, 1985–1992 (2007)CrossRefGoogle Scholar
  7. 7.
    U.P. Zhang, S.H. Lee, K.R. Reddy, A.I.G.K.P. Lee, J. Appl. Polym. Sci. 104, 2743–2750 (2007)CrossRefGoogle Scholar
  8. 8.
    H. Widiyandari, A. Purwanto, R. Balgis, T. Ogi, K. Okuyama, Chem. Eng. J. 180, 323–329 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Kim, C. Lee, W. Choi, Environ. Sci. Technol. 44, 6849–6854 (2010)CrossRefGoogle Scholar
  10. 10.
    H. Liu, T. Peng, D. Ke, Z. Peng, C. Yan, Mater. Chem. Phys. 104, 377–383 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Nanoscale 6, 11988–11994 (2014)CrossRefGoogle Scholar
  12. 12.
    K.R. Reddy, V.G. Gomes, M. Hassan, Mater. Res. Express 1, 015012 (2014)CrossRefGoogle Scholar
  13. 13.
    K.R. Reddy, K.P. Lee, A.I. Gopalan, Coll. Surf. A 320, 49–56 (2008)CrossRefGoogle Scholar
  14. 14.
    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, A Rev. Water Res. 44(10), 2997–3027 (2010)CrossRefGoogle Scholar
  15. 15.
    X. Jiang, X. Liu, Q. Chen, J. Inorg. Organomet. Polym. Mater. 27(6), 1683–1693 (2017)CrossRefGoogle Scholar
  16. 16.
    H. Wang, H. Yang, D. Chu, G. Ge, J. Sun, W. Hu, X. Chen, X. Chen, Y. Xue, Mater. Lett. 193, 5–8 (2017)CrossRefGoogle Scholar
  17. 17.
    W. Cong, C. Lin, J. Rare Earths 29, 727–731 (2011)CrossRefGoogle Scholar
  18. 18.
    Y. Shiraishi, Y. Sugano, S. Ichikawa, T. Hirai, Catal. Sci. Technol. 2, 400–405 (2012)CrossRefGoogle Scholar
  19. 19.
    B. Ma, J. Guo, W.-L. Dai, K. Fan, Appl. Catal. B 123, 193–199 (2012)CrossRefGoogle Scholar
  20. 20.
    X.F. Cheng, W.H. Leng, D.P. Liu, J.Q. Zhang, C.N. Cao, Chemosphere, 68, 1976–1984 (2007)CrossRefGoogle Scholar
  21. 21.
    S.G. Kumar, K.S.R. Rao, Appl. Surf. Sci. 355, 939–958 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal. 6, 7021–7029 (2016)CrossRefGoogle Scholar
  23. 23.
    K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechnol. 11, 3692–3695 (2011)CrossRefGoogle Scholar
  24. 24.
    G. Gu, B. Zheng, W. Han, S. Roth, J. Liu, Nano Lett. 2, 849–851 (2002)CrossRefGoogle Scholar
  25. 25.
    K.R. Reddy, K.V. Karthik, S.B. Benaka, S.K. Soni, H.M. Jeong, A.V. Raghu, Polyhedron 120, 169–174 (2016)CrossRefGoogle Scholar
  26. 26.
    K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1–16 (2015)CrossRefGoogle Scholar
  27. 27.
    M.B. Tahir, G.N. Watto, M. Rafique, N.R. Khalid, Int. J. Environ. Sci. Technol. 14(11), 2519–2542 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of SciencesUniversity of GujratGujratPakistan
  2. 2.National Institute for Biotechnology and Genetic Engineering (NIBGE)FaisalabadPakistan

Personalised recommendations