Skip to main content

Advertisement

Log in

Boron Nitride Nanoparticles with High Specific Surface Area: Preparation by a Calcination Method and Application in Epoxy Resin

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Boron nitride nanoparticles were prepared in a muffle furnace at 1000 °C by using commercial available boron nitride flakes and sodium chloride as raw materials. The structure, functional groups, morphology and specific surface area of the as-prepared samples were characterized by X-ray diffracmeter, fourier-transform infrared spectrometer, transmission electron microscope and accelerated surface area/porosimetry system, respectively. In order to evaluate the properties of the as-prepared products, they were mixed with epoxy resin to fabricate polymer-based composites. Experimental results showed that the average size and specific surface area of the as-prepared nanoparticles were about 20 nm and 895.7 m2/g. Moreover, the as-prepared nanoparticles could improve the tensile strength and elongation at break of the epoxy matrix. Both of them were first increased and then decreased with increasing the usage amount of the as-prepared nanoparticles. When the usage amount of the boron nitride nanoparticles was 0.4 wt%, the tensile strength and elongation at break of the composites reached to 71.4 MPa and 22.1%, which were the maximum values of the composites, respectivley. They were increased by 137 and 146% more than those of pure epoxy resin. In addition, the as-prepared fillers could accelerate the solidification of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M. Itkis, R. Haddon, Adv. Mater. 20, 4740 (2008)

    Article  CAS  Google Scholar 

  2. F. Ren, G. Zhu, P. Ren, Y. Wang, X. Cui, Appl. Surf. Sci. 316, 549 (2014)

    Article  CAS  Google Scholar 

  3. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, Carbon 47, 922 (2009)

    Article  CAS  Google Scholar 

  4. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S.T. Roth, Nature 446, 60 (2007)

    Article  CAS  Google Scholar 

  5. K. Manna, C.Y. Hsieh, S.C. Lo, Y.S. Li, H.N. Huang, H.W. Chiang, Carbon 105, 551 (2016)

    Article  CAS  Google Scholar 

  6. Y. Xue, X. Jin, Y. Fan, R. Tian, X. Xu, Polym. Compos. 3, 1707 (2014)

    Article  Google Scholar 

  7. H.S. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, Angew. Chem. 49, 4059 (2010)

    Article  CAS  Google Scholar 

  8. R. Khan, R. Alderliesten, L. Yao, R. Benedictus, Compos. Part. A 67, 201 (2014)

    Article  CAS  Google Scholar 

  9. W. Zhou, J. Zuo, X. Zhang, A. Zhou, J. Compos. Mater. 48, 25 (2013)

    Google Scholar 

  10. F. Huang, J.K. Jian, R. Wu, J. Mater. Sci. 51, 1 (2016)

    Article  CAS  Google Scholar 

  11. A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 43, 934 (2014)

    Article  CAS  Google Scholar 

  12. L. Song, L. Ci, H. Lu, P. B. Sorokin, C. H. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, Nano. Lett. 10, 3209 (2010)

    Article  CAS  Google Scholar 

  13. W. Zhu, X. Gao, Q. Li, H. Li, Y. Chao, M. Li, S.M. Mahurin, H. Li, H.Y. Zhu, S. Dai, Angew. Chem. 55, 10924 (2016)

    Article  Google Scholar 

  14. L. X. Lin, Y. Zheng, Z. H. Li, K. M. Wei, Scripta. Mater. 59, 1151 (2008)

    Article  CAS  Google Scholar 

  15. L. Xue, B. Lu, Z.S. Wu, C. Ge, P. Wang, R. Zhang, Chem. Eng. J. 243, 494 (2014)

    Article  CAS  Google Scholar 

  16. Y. Lin, J.W. Connell, Nanoscale 4, 6908 (2012)

    Article  CAS  Google Scholar 

  17. J. Yu, X. Huang, C. Wu, X. Wu, G. Wang, P. Jiang, Polymer 53, 471 (2012)

    Article  CAS  Google Scholar 

  18. R. Meier, I. Kahraman, A.T. Seyhan, S. Zaremba, K. Drechsler, Compos. Sci. Technol. 128, 94 (2016)

    Article  CAS  Google Scholar 

  19. L. Fang, C. Wu, R. Qian, L. Xie, K. Yang, P. Jiang, RSC. Adv. 4, 679 (2014)

    Google Scholar 

  20. A. Yu, W. Xing, W. Guo, S. Qiu, X. Wang, S. Lo, Y. Hu, J. Mater. Chem. A 4, 7330 (2016)

    Article  CAS  Google Scholar 

  21. X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Song, J. Xu, C. Wong, Small 11, 6205 (2015)

    Article  CAS  Google Scholar 

  22. M. Donnay, S. Tzavalas, E. Logakis, Compos. Sci. Technol. 110, 152 (2015)

    Article  CAS  Google Scholar 

  23. M.B. Jakubinek, J.F. Niven, M.B. Johnson, B. Ashrafi, K.S. Kim, B. Simard, M.A. White, Phys. Status Solidi A 213, 2237 (2016)

    Article  CAS  Google Scholar 

  24. D. Lee, S.H. Song, J.H. wang, S.H. Jin, K.H. Park, B.H. Kim, S.H. Hong, S. Jeon, Small 9, 2602 (2013)

    Article  CAS  Google Scholar 

  25. J. Gu, Q. Zhang, J. Dang, C. Xie, Adv. Technol. 23, 1025 (2012)

    Article  CAS  Google Scholar 

  26. L. Huang, P. Zhu, G. Li, F. Zhou, D. Lu, R. Sun, C. Wong, J. Mater. Sci. 26, 3564 (2015)

    CAS  Google Scholar 

  27. R. Siburian, J. Nakamura, J. Phys. Chem. C 116, 22947 (2012)

    Article  CAS  Google Scholar 

  28. C. Fan, J. Feng, J. Liu, T. Gao, Z. Ye, M. Chen, X. Lv, Ceram. Int. 42, 7155 (2016)

    Article  CAS  Google Scholar 

  29. T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern, Y.K. Gunko, J. Coleman, J. Am. Chem. Soc. 134, 60 (2012)

    Article  Google Scholar 

  30. L. Cao, S. Emami, K. Lafdi, Mater. Express 4, 165 (2014)

    Article  CAS  Google Scholar 

  31. Y. Lin, T.V. Williams, J.W. Connell, J. Phys. Chem. Lett. 1, 277 (2010)

    Article  Google Scholar 

  32. L.M. Yang, Y.J. Wang, Y.W. Sun, G.S. Luo, Y.Y. Dai, J. Colloid. Interf. Sci. 299, 823 (2006)

    Article  CAS  Google Scholar 

  33. X.L. Ji, Q.Y. Hu, J.E. Hampsey, X.P. Qiu, L.X. Gao, J.B. He, Y, F. Lu, Chem. Mater. 18, 2265 (2006)

    Article  CAS  Google Scholar 

  34. S.P. Singh, J. Colloid. Interf. Sci. 325, 207 (2008)

    Article  CAS  Google Scholar 

  35. L.M. Yang, Y.J. Wang, G.S. Luo, Y.Y. Dai, Micropor. Mesopor. Mat. 84, 275 (2005)

    Article  CAS  Google Scholar 

  36. M. A. Vargas, H. Vázquez, G. Guthausen, Thermochim. Acta. 611, 10 (2015)

    Article  CAS  Google Scholar 

  37. J. Wan, Z. Y. Bu, C. J. Xu, H. Fan, B. G. Li, Thermochim. Acta. 525, 31 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Youth Science and Technology Foundation of Higher Education Institutions of Hebei Province, China (Grant No. Q2012111) and Natural Science Foundation of Hebei Province, China (Grant No. E2013210011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-feng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Xf., Zhao, Zh., Sun, Y. et al. Boron Nitride Nanoparticles with High Specific Surface Area: Preparation by a Calcination Method and Application in Epoxy Resin. J Inorg Organomet Polym 27, 1142–1147 (2017). https://doi.org/10.1007/s10904-017-0540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0540-x

Keywords

Navigation