Skip to main content

Materials from Nanosized ZnO and Polyacrylonitrile: Properties Depending on the Design of Fibers (Electrospinning or Electrospinning/Electrospraying)

Abstract

New hybrid fibrous materials from polyacrylonitrile (PAN) and nanosized zinc oxide have been prepared by electrospinning or by combining electrospinning and electrospraying techniques. Electrospinning of PAN/nanosized zinc oxide dispersion leads to the production of mats with nanofiller distributed mainly in the bulk of the fibers. Electrospinning of PAN solution performed in conjunction with electrospraying of nanosized zinc oxide dispersion enables the preparation of fibers decorated with zinc oxide particles. The incorporation of zinc oxide in the fibers leads to enhancement of the mechanical properties of the mats. The fibrous materials having zinc oxide particles situated on the fibers surface exhibit better photocatalytic activity in respect to photo-induced degradation of the model dye methylene blue and greater antibacterial activity against the pathogenic microorganism Staphylococcus aureus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. A. Haider, S. Haider, I.K. Kang, Arabian J. Chem. (2015). doi:10.1016/j.arabjc.2015.11.015

    Article  Google Scholar 

  2. E.-R. Kenawy, in Polymeric Materials with Antimicrobial Activity: From Synthesis to Applications, ed. by A. Muñoz-Bonilla, M. Cerrada, M. Fernández-García. RSC Polymer Chemistry Series (The Royal Society of Chemistry, London, 2014), p. 208

  3. R. Sridhar, R. Lakshminarayanan, K. Madhaiyan, V.A. Barathi, K.S.C. Lim, S. Ramakrishna, Chem. Soc. Rev. 44, 790 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. J. Quirós, K. Boltes, R. Rosal, Polym. Rev. 56, 631 (2016)

    Article  CAS  Google Scholar 

  5. Z.-G. Wang, L.-S. Wan, Z.-K. Xu, J. Membr. Sci. 304, 8 (2007)

    Article  CAS  Google Scholar 

  6. S.Y. Gu, J. Rena, Q.L. Wu, Synth. Met. 155, 157 (2005)

    Article  CAS  Google Scholar 

  7. D.S. Gomes, A.N.R. da Silva, N.I. Morimoto, Polímeros 17, 206 (2007)

    Article  CAS  Google Scholar 

  8. P. Heikkilä, A. Harlin, Express Polym. Lett. 3, 437 (2009)

    Article  CAS  Google Scholar 

  9. O. Stoilova, N. Manolova, K. Gabrovska, I. Marinov, Tz. Godjevargova, D.G. Mita, I. Rashkov, J. Bioact. Compat. Polym. 25, 40 (2010)

    Article  CAS  Google Scholar 

  10. M. Kancheva, A. Toncheva, N. Manolova, I. Rashkov, Mater. Lett. 136, 150 (2014)

    Article  CAS  Google Scholar 

  11. H. Chen, G Jiang, W. Yu, D. Liu, Y. Liu, L. Li, Q. Huang, Z. Tong, W. Chen, Powder Techn. 298, 1 (2016)

    Article  CAS  Google Scholar 

  12. A. Kołodziejczak-Radzimska, T. Jesionowski, Materials 7, 2833 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7, 219 (2015)

    Article  CAS  Google Scholar 

  14. S. Teixeira, P.M. Martins, S. Lanceros-Méndez, K. Kühn, G. Cunibertia, Appl. Surf. Sci. 384, 497 (2016)

    Article  CAS  Google Scholar 

  15. S.K. Nataraj, B.H. Kim, J.H. Yun, D.H. Lee, T.M. Aminabhavi, K.S. Yang, Carbon Lett. 9, 108 (2008)

    Article  Google Scholar 

  16. S. Kment, Z. Hubicka, H. Kmentova, P. Kluson, J. Krysa, I. Gregora, M. Morozova, M. Cada, D. Petras, P. Dytrych, M. Slater, L. Jastrabik, Catal. Today 161, 8 (2011)

    Article  CAS  Google Scholar 

  17. P. Singh, K. Mondal, A. Sharma, J. Colloid Interface Sci. 394, 208 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. C.H. Kim, B.-H. Kim, J. Power Sources 274, 512 (2015)

    Article  CAS  Google Scholar 

  19. R. Nain, D. Singh, M. Jassal, A.K. Agrawal, Nanoscale 8, 4360 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. D. Shao, Q. Wei, L. Zhang, Y. Cai, S. Jiang, Appl. Surf. Sci. 254, 6543 (2008)

    Article  CAS  Google Scholar 

  21. A.A. Chaaya, M. Bechelany, S. Balme, P. Miele, J. Mater. Chem. A 2, 20650 (2014)

    Article  CAS  Google Scholar 

  22. Z. Emami-Karvani, P. Chehrazi, Afr. J. Microbiol. Res 5, 1368 (2011)

    CAS  Google Scholar 

  23. M. Wu, Q. Wang, K. Li, Y. Wu, H. Liu, Polym. Degrad. Stab 97, 1511 (2012)

    Article  CAS  Google Scholar 

  24. M. Kancheva, A. Toncheva, N. Manolova, I. Rashkov, Express Polym. Lett. 9, 49 (2015)

    Article  CAS  Google Scholar 

  25. R. Augustine, H. Malik, D. Singhal, A. Mukherjee, D. Malakar, N. Kalarikkal, S. Thomas, J. Polym. Res. 21, 347 (2014)

    Article  CAS  Google Scholar 

  26. M. Nasr, R. Viter, C. Eid, F. Warmont, R. Habchi, P. Miele, M. Bechelany, RSC Adv. 6, 103692 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iliya Rashkov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kancheva, M., Toncheva, A., Paneva, D. et al. Materials from Nanosized ZnO and Polyacrylonitrile: Properties Depending on the Design of Fibers (Electrospinning or Electrospinning/Electrospraying). J Inorg Organomet Polym 27, 912–922 (2017). https://doi.org/10.1007/s10904-017-0536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0536-6

Keywords

  • Polyacrylonitrile
  • Nanosized zinc oxide
  • Electrospinning
  • Electrospraying
  • Photocatalytic activity
  • Antibacterial activity