Advertisement

Electrochemical Supercapacitance Properties of Reduced Graphene Oxide/Mn2O3:Co3O4 Nanocomposite

  • Chinnasamy Sengottaiyan
  • Ramasamy Jayavel
  • Rekha Goswami Shrestha
  • Jonathan P. Hill
  • Katsuhiko Ariga
  • Lok Kumar Shrestha
Article

Abstract

Graphene-based composite material was prepared and its electrochemical supercapacitive properties were investigated. The composite material comprises of mixed manganese oxide (Mn2O3) and cobalt oxide (Co3O4) crystal distributed on the reduced graphene oxide (RGO) matrix. Structure and morphology of the composite was studied by X-ray diffractometry, high resolution transmission electron microscopy and scanning electron microscopy. The surface functional groups and chemical composition were confirmed by Fourier transform infrared spectroscopy, Raman scattering spectroscopy and X-ray photoelectron spectroscopy. Thermal stability was investigated by thermo gravimetric analysis. Electrochemical supercapacitive performance of the composite was investigated by cyclic voltammetry (CV) and chronopotentiometry. CV and chronopotentiometry results suggested that electrochemical performance of the composite material is better than RGO and mixed Mn2O3 and Co3O4. Specific capacitance of composite was obtained 210 F g−1 at scan rate of 5 mV s−1 and 184 F g−1 at current density of 2 A g−1, respectively. Moreover, the composite showed high cyclic stability with the retention of about 87% capacitance after 1000 charge/discharge cycles. These results suggest the importance and potential of graphene based composite in supercapacitor application.

Keywords

Graphene Reduced graphene oxide Manganese oxide Cobalt oxide Nanocomposite Supercapacitance 

Notes

Acknowledgements

This work is partially supported by JSPS KAKENHI Grant Number JP 16H06518 (Coordination Asymmetry). CS sincerely thanks National Institute for Materials Science (NIMS), Japan and Anna University, India for the NIMS internship award.

References

  1. 1.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum, New York, 1999)Google Scholar
  2. 2.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  3. 3.
    A. Burke, J. Power Source 91, 7 (2000)CrossRefGoogle Scholar
  4. 4.
    J.R. Magana, Y.V. Kolen’ko, F.L. Deepak, C. Solans, R.G. Shrestha, J.P. Hill, K. Ariga, L.K. Shrestha, C. Rodriguez-Abreu, ACS Appl, Mater. Interface 8, 31231 (2016)CrossRefGoogle Scholar
  5. 5.
    L.K. Shrestha, R.G. Shrestha, J.P. Hill, T. Tsuruoka, Q. Ji, T. Nishimura, K. Ariga, Langmuir 32, 12511 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Sahoo, R.G. Shrestha, L.K. Shrestha, J.P. Hill, T. Takei, K. Ariga, J. Inorg Organomet Polym. 26, 1301 (2016)CrossRefGoogle Scholar
  7. 7.
    P. Bairi, R.G. Shrestha, J.P. Hill, T. Nishimura, K. Ariga, L.K. Shrestha, J. Mater. Chem. A 4, 13899 (2016)CrossRefGoogle Scholar
  8. 8.
    L.K. Shrestha, L. Adhikari, R.G. Shrestha, M.P. Adhikari, R. Adhikari, J.P. Hill, R.R. Pradhananga, K. Ariga, Sci. Technol. Adv. Mater. 17, 483 (2016)CrossRefGoogle Scholar
  9. 9.
    P. Bairi, K. Minami, W. Nakanishi, J.P. Hill, K. Ariga, L.K. Shrestha, ACS Nano 10, 6631 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Jin, J.P. Hill, Q. Ji, L.K. Shrestha, K. Ariga, J. Mater. Chem. A 4, 5737 (2016)CrossRefGoogle Scholar
  11. 11.
    M.A. Pradhananga, R. Adhikari, R.G. Shrestha, R. Rajendran, L. Adhikari, P. Bairi, R.R. Pradhananga, L.K. Shrestha, K. Ariga, Bull. Chem. Soc. Jpn. 88, 1108 (2015)CrossRefGoogle Scholar
  12. 12.
    L.K. Shrestha, R.G. Shrestha, Y. Yamauchi, J.P. Hill, T. Nishimura, K. Miyazawa, T. Kawai, S. Okada, K. Wakabayashi, K. Ariga, Angew. Chem. Int. Ed. 54, 951 (2015)CrossRefGoogle Scholar
  13. 13.
    L.K. Shrestha, Y. Yamauchi, J.P. Hill, K. Miyazawa, K. Ariga, J. Am. Chem. Soc. 135, 586 (2013)CrossRefGoogle Scholar
  14. 14.
    B. Yin, Z. Wang, S. Zhang, C. Liu, Q. Ren, K. Ke, ACS Appl. Mater. Interfaces 8, 26019 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Saito, H. Kinoshita, K.I. Shimizu, Y. Nishina, Bull. Chem. Soc. Jpn. 89, 67 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Liu, P. He, Z. Li, Y. Liu, J. Li, Electrochem. Acta 51, 1925 (2006)CrossRefGoogle Scholar
  17. 17.
    X. Zhou, Q. Chen, A. Wang, J. Xu, S. Wu, J. Shen, ACS Appl. Mater. Interfaces 8, 3776 (2016)CrossRefGoogle Scholar
  18. 18.
    W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C.S. Ozkan, Sci. Rep. 4, 1 (2014)Google Scholar
  19. 19.
    C. Gong, M. Huang, J. Zhang, M. Lai, L. Fan, J. Lin, J. Wu, RSC Adv. 5, 81474 (2015)CrossRefGoogle Scholar
  20. 20.
    K. Makgopa, P.M. Ejikeme, C.J. Jafta, K. Raju, M. Zeiger, V. Presser, K.I. Ozoemen, J. Mater. Chem. A 3, 3480 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Lang, A. Hirata, T. Fujita, M. Chen, Nat. Nanotec. 6, 232 (2011)CrossRefGoogle Scholar
  22. 22.
    B. Anasori, M. Beidaghi Y. Gogotsi, Mater. Today 17, 253 (2014)CrossRefGoogle Scholar
  23. 23.
    S.P. Lima, N.M. Huang, H.N. Lim, Ceram. Int. 39, 6647 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Zhu, E. Liu, Z. Luo, T. Hu, T. Liu, Z. Li, Q. Zhao, Electroche. Acta 118, 106 (2014)CrossRefGoogle Scholar
  25. 25.
    W. Yue, Z. Lin, S. Jiang, X. Yang, J. Mater. Chem. 22, 16318 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)CrossRefGoogle Scholar
  27. 27.
    R. Rajendran, L.K. Shrestha, K. Minami, M. Subramanian, R. Jayavel, K. Ariga, J. Mater. Chem. A 2, 18480 (2014)CrossRefGoogle Scholar
  28. 28.
    R. Rajendran, L.K. Shrestha, R.M. Kumar, R. Jayavel, J.P. Hill, K. Ariga, J. Inorg. Organomet. Polym. Mater. 25, 267 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Gomez, E.E. Kalu, J. Power Sources 230, 218 (2013)CrossRefGoogle Scholar
  30. 30.
    L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009)CrossRefGoogle Scholar
  31. 31.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  32. 32.
    L. Liu, X. Zhang, R. Wang, J. Liu, Superlat. Microstruct. 72, 219 (2014)CrossRefGoogle Scholar
  33. 33.
    Z. Song, Y. Zhang, W. Liu, S. Zhang, G. Liu, H. Chen, J. Qiu, Electrochem. Acta 112, 120 (2013)CrossRefGoogle Scholar
  34. 34.
    C. Xu, X. Wang, J. Zhu, J. Phys. Chem. C 112, 19841 (2008)CrossRefGoogle Scholar
  35. 35.
    S.P. Dharupaneedi, R.V. Anjanapura, J.M. Han, T.M. Aminabhavi, Ind. Eng. Chem. Res. 53, 14474 (2014)CrossRefGoogle Scholar
  36. 36.
    D.R. Son, A.V. Raghu, K.R. Reddy, H.M. Jeong, J. Macromole. Sci. Phys. 55, 1099 (2016)CrossRefGoogle Scholar
  37. 37.
    J. Xie, H. Cao, H. Jiang, Y. Chen, W. Shi, H. Zheng, Y. Huang, Anal. Chem. Acta 796, 92 (2013)CrossRefGoogle Scholar
  38. 38.
    M.M. Bidgoli, M. Mohsennia, F.A. Boroumand, Bull. Chem. Soc. Jpn. 88, 684 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Cao, N. Han, J. Han, Y. Hu, L. Fan, C. Zhou, R. Guo, ACS Appl. Mater. Interfaces 8, 6040 (2016)CrossRefGoogle Scholar
  40. 40.
    V.H. Nguyen, V.C. Tran, D. Kharismadewi, J.J. Shim, Mater. Lett. 147, 123 (2015)CrossRefGoogle Scholar
  41. 41.
    B. Varghese, T.C. Hoong, Z. Yanwu, M.V. Reddy, B.V.R. Chowdari, A.T.S. Wee, T.B.C. Vincent, C.T. Lim, C.H. Sow, Adv. Func. Mater 17, 1932 (2007)CrossRefGoogle Scholar
  42. 42.
    K. Mukawa, N. Oyama, T. Shinmi, Y. Sekine, Bull. Chem. Soc. Jpn. 89, 892 (2016)CrossRefGoogle Scholar
  43. 43.
    Y. Ikeda, M.R. Karim, H. Takehira, T. Matsui, K. Hatakeyama, Y. Murashima, T. Taniguchi, M. Koinuma, M. Nakamura, Y. Matsumoto, S. Hayami, Bull. Chem. Soc. Jpn. 87, 639 (2014)CrossRefGoogle Scholar
  44. 44.
    C.S. Bongu, G. Babu, K. Nallathamby, RSC Adv. 00, 1 (2013)Google Scholar
  45. 45.
    C. Xu, X. Wang, J. Zhu, X. Yang, L. Lu, J. Mater. Chem. 18, 5625 (2008)CrossRefGoogle Scholar
  46. 46.
    D. P. Suhas, T. M. Aminabhavi, H. M. Jeong, A. V. Raghu, RSC Adv. 5, 100984 (2015)CrossRefGoogle Scholar
  47. 47.
    K.T. Kim, T.D. Dao, H.M. Jeong, R.V. Anjanapura, T.M. Aminabhavi, Mater. Chem. Phys. 153, 291 (2015)CrossRefGoogle Scholar
  48. 48.
    Y. Zhang, M. Ma, J. Yang, W. Huang, X. Dong, RSC Adv. 4, 8466 (2014)CrossRefGoogle Scholar
  49. 49.
    L. Zheng, Y. Xu, D. Jin, Y. Xie, J. Mater. Chem 20, 7135 (2010)CrossRefGoogle Scholar
  50. 50.
    K. Subramani, S. Kowsik, M. Sathish, Chem. Select 1, 3455 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Chinnasamy Sengottaiyan
    • 1
    • 2
  • Ramasamy Jayavel
    • 2
  • Rekha Goswami Shrestha
    • 1
  • Jonathan P. Hill
    • 1
  • Katsuhiko Ariga
    • 1
  • Lok Kumar Shrestha
    • 1
  1. 1.International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS)TsukubaJapan
  2. 2.Centre for Nanoscience and TechnologyAnna UniversityChennaiIndia

Personalised recommendations