Supramolecular Architectures in Three Metal(II) Coordination Polymers with 2,5-Dichloroterephthalate and Flexible Bis(Benzimidazole) Ligands

  • Hai-Ning Chang
  • Suo-Xia Hou
  • Guang-Hua Cui
  • Sheng-Chun Wang


Three supramolecular coordination polymers, namely [Ni(L1)(DCTP)(H2O)] n (1), [Cu(L2)(DCTP)] n (2), [Co(L3)(DCTP)] n (3) (L1 = 1,5-bis(5,6-dimethylbenzimidazole)pentane, L2 = 1,4-bis(5,6-dimethylbenzimidazole)butane, L3 = 1,4-bis(benzimidazole)-2-butylene) have been hydrothermally synthesized and characterized by single crystal X-ray structure determination, FT-IR, elemental analysis, X-ray powder diffraction (XPD), and thermogravimetric analysis (TGA). CP 1 exhibits 2D 63 honeycombed network structure, which is further extended into a 3D Moganite (mog) supramolecular framework by classical O–H⋯O hydrogen-bonding interaction. CPs 2 –3 present 2D (4,4) layers, and 3D supramolecular frameworks that are formed by ππ stacking interactions. Furthermore, the catalytic activities of CPs 1–3 for the degradation of methyl orange in a Fenton-like process has been investigated, and CPs 1–3 show strong photoluminescence properties at room temperature in solid state.


Catalytic activity Flexible bis(benzimidazole) Photoluminescence property Supramolecular framework 



The project was supported by the National Natural Science Foundation of China (51474086), Natural Science Foundation – Steel and Iron Foundation of Hebei Province (B2015209299).

Supplementary material

10904_2016_494_MOESM1_ESM.pdf (544 kb)
Supplementary material 1 (PDF 543 KB)
10904_2016_494_MOESM2_ESM.doc (1.1 mb)
Supplementary material 2 (DOC 1170 KB)


  1. 1.
    P. Du, Y. Yang, D.W. Kang, J. Yang, Y.Y. Liu, J.F. Ma, CrystEngComm 16, 6372 (2014)CrossRefGoogle Scholar
  2. 2.
    H.X. Qi, J.F. Wang, Z.G. Ren, J.J. Ning, J.P. Lang, Dalton Trans. 44, 5662 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Roy, H.M. Titi, B.K. Tripuramallu, N. Bhunia, R. Verma, I. Goldberg, Cryst. Growth Des. 16, 2814 (2016)CrossRefGoogle Scholar
  4. 4.
    J.M. Hu, V.A. Blatov, B.Y. Yu, K. Van Hecke, G.H. Cui, Dalton Trans. 45, 2426 (2016)CrossRefGoogle Scholar
  5. 5.
    M. Hu, S. Furukawa, R. Ohtani, H. Sukegawa, Y. Nemoto, J. Reboul, S. Kitagawa, Y. Yamauchi, Angew Chem. Int. Ed. 51, 984 (2012)CrossRefGoogle Scholar
  6. 6.
    H.Y. Lian, M. Hu, C.H. Liu, Y. Yamauchi, K.C. Wu, Chem. Commun. 48, 5151 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Hu, A.A. Belik, M. Imura, Y. Yamauchi, J. Am. Chem. Soc. 135, 384 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Hu, A.A. Belik, M. Imura, K. Mibu, Y. Tsujimoto, Y. Yamauchi, Chem. Mater. 24, 2698 (2012)CrossRefGoogle Scholar
  9. 9.
    J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38, 1477 (2009)CrossRefGoogle Scholar
  10. 10.
    Y. Shen, C.C. Fan, Y.Z. Wei, J. Du, H.B. Zhu, Y. Zhao, Cryst. Growth Des. 16, 5859 (2016)CrossRefGoogle Scholar
  11. 11.
    X.L. Wang, X.T. Sha, G.C. Liu, N.L. Chen, Y. Tian, CrystEngComm 17, 7290 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Shi, Z. Pan, H. Jia, S. Chen, L. Qin, H. Zheng, Cryst. Growth Des. 16, 2747 (2016)CrossRefGoogle Scholar
  13. 13.
    Y.Q. Chen, G.R. Li, Z. Chang, Y.K. Qu, Y. H. Zhang, X.H. Bu, Chem. Sci. 4, 3678 (2013)CrossRefGoogle Scholar
  14. 14.
    X. Ma, X. Li, Y.E. Cha, L.P. Jin, Cryst. Growth Des. 12, 5227 (2012)CrossRefGoogle Scholar
  15. 15.
    G. C. Liu, J. J. Huang, J. W. Zhang, X. L. Wang and H. Y. Lin, Transit. Met. Chem. 38, 359 (2013)CrossRefGoogle Scholar
  16. 16.
    H.N. Chang, Y.G. Liu, Z.C. Hao, G.H. Cui, J. Inorg. Organomet. Polym. 26, 855 (2016)CrossRefGoogle Scholar
  17. 17.
    G.P. Yang, L. Hou, Y.Y. Wang, Y.N. Zhang, Q.Z. Shi, S.R. Batten, Cryst. Growth Des. 11, 936 (2011)CrossRefGoogle Scholar
  18. 18.
    J.H. Qin, L.F. Ma, Y. Hu, L.Y. Wang, CrystEngComm 14, 2891 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Du, C.P. Li, J.M. Wu, J.H. Guo, G.C. Wang, Chem. Commun 47, 8088 (2011)CrossRefGoogle Scholar
  20. 20.
    C.M. Rogers, C.Y. Wang, G.A. Farnum, R.L. LaDuca, Inorg. Chim. Acta 403, 78 (2013)CrossRefGoogle Scholar
  21. 21.
    Q.B. Bo, H.Y. Wang, D.Q. Wang, New J. Chem. 37, 380 (2013)CrossRefGoogle Scholar
  22. 22.
    A.D. Burrows, C.G. Frost, M.F. Mahon, M. Winsper, C. Richardson, J.P. Attfield, J.A. Rodgers, Dalton Trans. 6788 (2008)Google Scholar
  23. 23.
    Q. Guo, C. Xu, B. Zhao, Y. Jia, H. Hou, Y. Fan, Cryst. Growth Des. 12, 5439 (2012)CrossRefGoogle Scholar
  24. 24.
    X.L. Wang, L.L. Hou, J.W. Zhang, J.X. Zhang, G.C. Liu, S. Yang, CrystEngComm 14, 3936 (2012)CrossRefGoogle Scholar
  25. 25.
    J.W. Zhang, C.H. Gong, L.L. Hou, A.X. Tian, X.L. Wang, J. Solid State Chem. 205, 104 (2013)CrossRefGoogle Scholar
  26. 26.
    J.M. Hao, B.Y. Yu, K. Van Hecke, G.H. Cui, CrystEngComm 17, 2279 (2015)CrossRefGoogle Scholar
  27. 27.
    X.X. Wang, B.Y. Yu, K. Van Hecke, G.H. Cui, RSC Adv. 4, 61281 (2014)CrossRefGoogle Scholar
  28. 28.
    X.B. Liu, C.M. Huang, G.Y. Dong, G.H. Cui, Transit. Met. Chem. 40, 847 (2015)CrossRefGoogle Scholar
  29. 29.
    X. Zhang, Y. G. Liu, B. Y. Yu, G. H. Cui, Transit. Met. Chem. 41, 213 (2015)CrossRefGoogle Scholar
  30. 30.
    C.D. Si, D.C. Hu, Y. Fan, X.Y. Dong, X.Q. Yao, Y.X. Yang, J.C. Liu, Cryst. Growth Des. 15, 5781 (2015)CrossRefGoogle Scholar
  31. 31.
    Y.W. Dong, R.Q. Fan, X.M. Wang, P. Wang, H.J. Zhang, L.G. Wei, W. Chen, Y.L. Yang, Cryst. Growth Des. 16, 3366 (2016)CrossRefGoogle Scholar
  32. 32.
    H.N. Chang, C. Liu, Z.C. Hao, G.H. Cui, J. Mol. Struct. 1130, 303 (2016)CrossRefGoogle Scholar
  33. 33.
    M.D. DeFuria, M. Zeller, D.T. Genna, Cryst. Growth Des. 16, 3530 (2016)CrossRefGoogle Scholar
  34. 34.
    D. Sawada, Y. Ogawa, Y. Nishiyama, E. Togawa, S. Kimura, P. Langan, Cryst. Growth Des. 16, 3345 (2016)CrossRefGoogle Scholar
  35. 35.
    X.L. Wang, B. Mu, H.Y. Lin, S. Yang, G.C. Liu, A.X. Tian, J.W. Zhang, Dalton Trans. 41, 11074 (2012)CrossRefGoogle Scholar
  36. 36.
    C.P. Li, J. Chen, P.W. Liu, M. Du, CrystEngComm 15, 9713 (2013)CrossRefGoogle Scholar
  37. 37.
    X.G. Guo, W.B. Yang, X.Y. Wu, Q.K. Zhang, C.Z. Lu, CrystEngComm 15, 10107 (2013)CrossRefGoogle Scholar
  38. 38.
    T.A. Fairley, R.R. Tidwell, I. Donkor, N.A. Naiman, K.A. Ohemeng, R.J. Lombardy, J.A. Bentley, M. Cory, J. Med. Chem. 36, 1746 (1993)CrossRefGoogle Scholar
  39. 39.
    G.M. Sheldrick, Acta Crystallogr. Sect. C 71, 3 (2015)CrossRefGoogle Scholar
  40. 40.
    V.A. Blatov, Struct. Chem. 23, 955 (2012)CrossRefGoogle Scholar
  41. 41.
    X.L. Wang, S. Yang, G.C. Liu, J.X. Zhang, H.Y. Lin, A.X. Tian, Inorg. Chim. Acta 375, 70 (2011)CrossRefGoogle Scholar
  42. 42.
    U.H.F. Bunz, Chem. Rev. 100, 1605 (2000)CrossRefGoogle Scholar
  43. 43.
    X.X. Wang, X.Q. Wang, X.Y. Niu, T.P. Hu, CrystEngComm 18, 7471 (2016)CrossRefGoogle Scholar
  44. 44.
    B. Ugale, D. Singh, C.M. Nagaraja, J. Solid State Chem 226, 273 (2015)CrossRefGoogle Scholar
  45. 45.
    Y. Zhang, N. Klamerth, P. Chelme-Ayala, M. Gamal El-Din, Environ. Sci. Technol. 50, 10535 (2016)CrossRefGoogle Scholar
  46. 46.
    M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, J. Wan, X. Gong, Y. Zhu, J. Hazard. Mater. 312, 184 (2016)CrossRefGoogle Scholar
  47. 47.
    W. Wang, Y. Qu, B. Yang, X. Liu, W. Su, Chemosphere 86, 376 (2012)CrossRefGoogle Scholar
  48. 48.
    A. Aghaeinejad-Meybodi, S. Ebadi, A. Shafiei, A. Khataee, M. Rostampour, Environ. Technol. 36, 1477 (2015)CrossRefGoogle Scholar
  49. 49.
    A. Khataee, M. Fathinia, S. Bozorg, TUrk. J. Chem. 40, 347 (2016)CrossRefGoogle Scholar
  50. 50.
    A. Angelova, B. Angelov, R. Mutafchieva, S. Lesieur, J. Inorg. Organomet. Polym. 25, 214 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic MaterialsNorth China University of Science and TechnologyTangshanPeople’s Republic of China

Personalised recommendations