Luminescent Sensing of Volatile Organic Compounds Using a Zn-based Coordination Polymer with Tunable Morphology

  • Rodrigo Chan-Navarro
  • Dante Corpus-Coronado
  • Blanca M. Muñoz-Flores
  • Margarita Loredo-Cancino
  • Noemí Waksman
  • Rosalba Ramírez
  • Víctor M. Jiménez-Pérez


Here we report the mechanochemical synthesis of Zn(ADB)n coordination polymer (ADB: azobenzene 4, 4′-dicarboxilic acid) in good yield, which provides advanced over conventional route as it is simple, faster, cost-effective and reproducible. Both coordination polymers were characterized by X-ray powder diffraction (PXRD), field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and simultaneous thermal analysis. PXRD studies showed that both materials exhibited the same pattern, proving the presence of the crystalline coordination polymer core. FESEM micrograph images showed plate shape microstructures with a length of 10 µm, and a thickness in range from 14 to 21 µm, which suggested that synthetic routes affect the coordination polymer morphology. The resulting coordination polymers have low porosity with surface areas around from 1.92 to 1.25 m2 g− 1 and pore sizes in range from 0.36 to 0.61 nm for mechanochemical and room temperature stirring routes, respectively. In a preliminary fluorescent sensing study, the coordination polymer soaked with different volatile organic compounds showed noticeable shifts of the emission band in comparison with the same materials free solvent.

Graphical Abstract


Mechanochemical Morphology COV’s Adsorption–desorption isotherms Fluorescent sensing 



The authors thank the CONACYT for a Research Grant (240011). D. C. C. thanks for scholarship from CONACYT.

Supplementary material

10904_2016_488_MOESM1_ESM.doc (231 kb)
Supplementary material 1 (DOC 231 KB)


  1. 1.
    A. Corma, H. García, F.X. Llabrési Xamena, Chem. Rev. 110, 4606 (2010)CrossRefGoogle Scholar
  2. 2.
    L. Ma, C. Abney, W. Lín, Chem. Soc. Rev. 38, 1248 (2009)CrossRefGoogle Scholar
  3. 3.
    J. Gascon, A. Corma, F. Kapteijnand, F.S. Llabrési Xamena, ACS Catal. 4, 361 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Canivet, D. Farrusseng, Application of metal–organic frameworks in fine J. chemical synthesis, K. Wilson, A.F. Lee, Heterogeneous Catalysts for Clean Technology: Spectroscopy, Design, and Monitoring, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013)Google Scholar
  5. 5.
    M.C. Muñoz, J.A. Real, M.A. Halcrow, Spin-Crossover Materials: Properties and Applications, (Wiley, Chichester, 2013)Google Scholar
  6. 6.
    D.-F. Weng, Z.-M. Wang, S. Gao, Chem. Soc. Rev. 40, 3157 (2011)CrossRefGoogle Scholar
  7. 7.
    D.R. Talham, M.W. Meisel, Chem. Soc. Rev. 40, 3356 (2011)CrossRefGoogle Scholar
  8. 8.
    G. Givaja, P. Amo-Ochoa, C.J. Gómez-García, F. Zamora, Chem. Soc. Rev. 41, 115 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Heine, K. Müller-Buschbaum, Chem. Soc. Rev. 42, 9232 (2013)CrossRefGoogle Scholar
  10. 10.
    K. Binnemans, Chem. Rev. 109, 4283 (2009)CrossRefGoogle Scholar
  11. 11.
    M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38, 3013 (2009)CrossRefGoogle Scholar
  12. 12.
    L.J. Murray, M. Dincă, J.R. Long, J. Mater. Chem. 21, 17259 (2011)CrossRefGoogle Scholar
  13. 13.
    T.A. Makal, J.-R. Li, W. Lu, H.-C. Zhou, Chem. Soc. Rev. 41, 7761 (2012)CrossRefGoogle Scholar
  14. 14.
    M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Chem. Rev. 112, 782 (2012)CrossRefGoogle Scholar
  15. 15.
    Y. He, W. Zhou, G. Quian, B. Chen, Chem. Soc. Rev. 43, 5657 (2014)CrossRefGoogle Scholar
  16. 16.
    B. Van de Voorde, J. Denayer, D. De Vos, Chem. Soc. Rev. 43, 5766 (2014)CrossRefGoogle Scholar
  17. 17.
    P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, Nat. Mater. 9, 172 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Della Rocca, D. Liu, W. Lin, Acc. Chem. Res. 44, 957 (2011)CrossRefGoogle Scholar
  19. 19.
    P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Chem. Rev. 112, 1232 (2011)CrossRefGoogle Scholar
  20. 20.
    C.-Y. Sun, C. Qin, X.-L. Wangand, Z.-M. Su, Expert Opin. Drug Deliv. 10, 89 (2013)CrossRefGoogle Scholar
  21. 21.
    V. Stavila, A.A. Talin, M.D. Allendorf. Chem. Soc. Rev. 43, 6011 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Du, Z.H. Zhang, L.F. Tang, X.G. Wang, X.J. Zhao, S.R. Batten, Chem. Eur. J. 13, 2578 (2007)CrossRefGoogle Scholar
  23. 23.
    C.Y. Su, A.M. Goforth, M.D. Smith, P.J. Pellechia, H.C.Z. Loye, J. Am. Chem. Soc. 126, 3576 (2004)CrossRefGoogle Scholar
  24. 24.
    O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423, 705 (2003)CrossRefGoogle Scholar
  25. 25.
    Z.G. Li, G.H. Wang, H.Q. Jia, N.H. Hu, J.W. Xu, CrystEngComm 9, 882 (2007)CrossRefGoogle Scholar
  26. 26.
    B. Chen, S. Xiang, G. Qian, Acc. Chem. Res. 43, 1115 (2010)CrossRefGoogle Scholar
  27. 27.
    Z. Hu, B.J. Deibert, J. Li, Chem. Soc. Rev. 43, 5815 (2014)CrossRefGoogle Scholar
  28. 28.
    L. Zhang, Z. Kang, X. Xin, D. Sun, CrysEngComm 18, 193 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Cui, Y. Yue, G. Quian, B. Chen, Chem. Rev. 112, 1126 (2012)CrossRefGoogle Scholar
  30. 30.
    H. Sakamoto, R. Matsuda, S. Kitagawa. Dalton Trans. 41, 3956 (2012)CrossRefGoogle Scholar
  31. 31.
    A. Pichon, A. Lazuen-Garay, S.L. James, CrysEngComm 8, 211 (2006)CrossRefGoogle Scholar
  32. 32.
    P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, E.R. Morris, C. Serre, Chem. Rev. 112, 1232 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Schlesinger, S. Schulze, M. Hietschold, M. Mehring, Microporous Mesoporous Mater. 132, 121 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Klimakow, P. Klobes, A.F. Thünemann, K. Rademann, F. Emmerling, Chem. Mater. 22, 5216 (2010)CrossRefGoogle Scholar
  35. 35.
    B. Liu, Q. Xu, Acta Cryst. E65, m509 (2009)Google Scholar
  36. 36.
    F. Fu, D.-S. Li, X.-G. Yang, C.-Q. Zhang, Y.-P. Wu, J. Zhao, E.-B. Wang, Inorg. Chem. Commun. 12, 657 (2009)CrossRefGoogle Scholar
  37. 37.
    T. Friščić, Metal-Organic Framework, 1st ed. (Wiley, Hoboken, 2010)Google Scholar
  38. 38.
    J. Hafizovic, M. Bjorgen, U. Olsbye, P.D.C. Dietzel, S. Bordiga, C. Prestipino, C. Lamberti, K.P. Lillerud, J. Am. Chem. Soc. 129, 3612 (2007)CrossRefGoogle Scholar
  39. 39.
    A. Schaate, S. Dühnen, G. Platz, S. Lilienthal, A.M. Schneider, P. Behrens, Eur. J. Inorg. Chem. 5, 790 (2012)CrossRefGoogle Scholar
  40. 40.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  41. 41.
    J. Lincke, D. Lässiga, J. Moellmer, C. Reichenbach, A. Puls, A. Moeller, R. Gläser, G. Kalies, R. Staudt, H. Krautscheid, Microporous Mesoporous Mater. 142, 62 (2011)CrossRefGoogle Scholar
  42. 42.
    M. Zhang, G. Feng, Z. Song, Y.-P. Zhou, H.-Y. Chao, D. Yuan, T.T.Y. Tan, Z. Guo, Z. Hu, B.Z. Tang, B. Liu, D. Zhao, J. Am. Chem. Soc. 136, 7241 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Rodrigo Chan-Navarro
    • 1
  • Dante Corpus-Coronado
    • 1
  • Blanca M. Muñoz-Flores
    • 1
  • Margarita Loredo-Cancino
    • 1
  • Noemí Waksman
    • 2
  • Rosalba Ramírez
    • 2
  • Víctor M. Jiménez-Pérez
    • 1
  1. 1.Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad UniversitariaMexicoMexico
  2. 2.Universidad Autónoma de Nuevo León, Facultad de MedicinaMonterreyMexico

Personalised recommendations